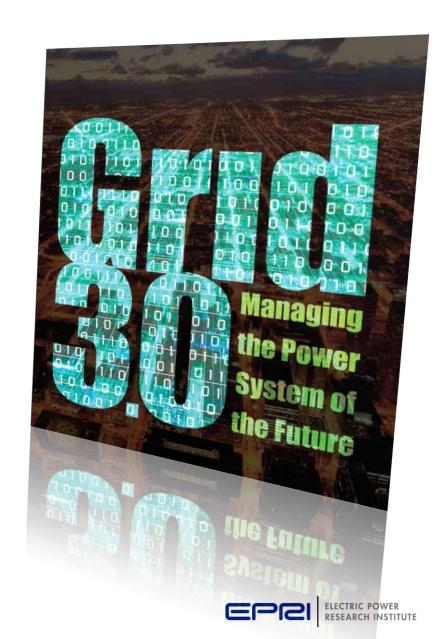


Solutions for Smart Transmission Panel

Future of Power System Protection

Paul Myrda


Technical Executive

CIGRE Grid of The Future Symposium

October 22, 2013

Contents

- Motivation
- Setting-less Protection
- Long Term Objective / Vision
- In Search of Secure Protection
- Laboratory Implementation

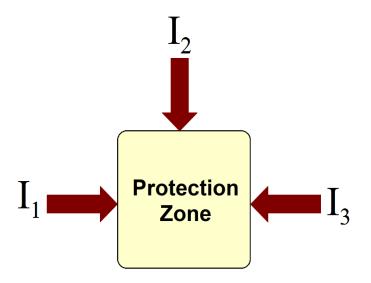
Background and Motivation

- Protection Settings Has Become a Very Complex Process
 - Human Error
 - Unable to coordinate due to conflicting factors
- Resources with Power Electronic Interfaces
 Exhibit Fault Currents Comparable to Load
 Currents (Fault Current Disparity).

Background and Motivation

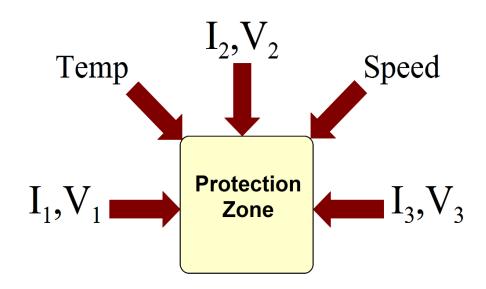
- Detection and Locating of Faults is Problematic in a Few Cases (Protection Gaps).
 - Faults Near Neutrals of Generators/Transformers, Faults in SC Lines
 - High Impedance Faults / Down Conductors
 - Load Encroachment, etc.
- Faulty Sensors result in False Decisions (lack of systematic error correction and hidden failure detection)
- Model Errors Play a Major Role in many Control Failures as well as Blackouts

Long Term Objective / Vision


- Develop a New Approach and Method for Protection Based on Dynamic State Estimation
 - simplifies protection (setting-less protection)
 - validated and high fidelity dynamic model of protection zone
- Make the Setting-less Relay the "GateKeeper" of Device Dynamic Models. Relays are Ubiquitous
 → 100% Coverage of System Model

Long Term Objective / Vision

- Setting-less Protective Relay Transmits the Validated Model UpStream (substation, control center, enterprise, etc.): Models are available with minimum latencies: → Use Models for various Applications (as needed) in a Process that is Free of Human Error
- The Approach Presently Forms the Core Research Activities of EPRI's Grid Transformation Program.


In Search of Secure Protection

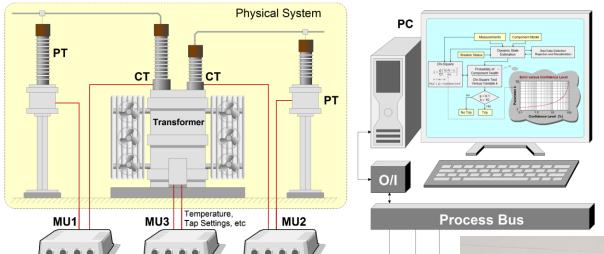
Setting-less Protection can be viewed as Generalized Differential protection

Differential Protection

(Monitors KCL Only)

Setting-less Protection

Monitors All Laws Applied to the Device (KCL, KVL, Thermal Mechanical, i.e. Complete Device Model)


Analytics: Dynamic State Estimation (systematic way to determine observance of physical laws)

The Zone Setting-less Protection Approach

- Measure/Monitor as Many Quantities as Possible and Use Dynamic State Estimation to Continuously Monitor the State (Condition, Health) of the Zone (Component) Under Protection. Identify bad data, model changes, etc.
- Act on the Basis of the Zone (Component) State (Condition, Component Health).
- Advantage: No need to know what is happening in the rest of the system – no coordination needed.

Laboratory Implementation

Experimental Setup

Block Diagram

Experimental Setup

PC with D/A Hardware

Omicron Amplifiers (3)

GE Hardfiber (2)

PCIe Cards (2)

Protection PC (1)

Recent Report

Program on Technology Innovation:

Setting-less Protection Methods for Grid Transformation

ID: 3002001846

Together...Shaping the Future of Electricity