CIGRE US National Committee 2014 Grid of the Future Symposium

October 20-21, 2014 Houston, USA

Risk Assessment of Aging Power Transformers in the Transmission Network

Marco Fleckenstein, Prof. Dr. -Ing. Claus Neumann, Prof. Dr. -Ing. Gerd Balzer

Technical University of Darmstadt, Institute of Electrical Power Systems Landgraf-Georg-Str. 4, 64283 Darmstadt, Germany phone: +49 6151 16-75004

pnone: +49 6151 16-75004

e-mail: marco.fleckenstein@eev.tu-darmstadt.de

Outage reasons & effects of power transformer

Cause for major faults

Risk Assessment of the assets in the TNM

Single asset risk determination with:

- Distribution function of Repair costs
- Age-dependent outage rates with distribution function
- Reliability data of all load & power plant scenarios
- Monte Carlo Simulation used for asset risk V(i) and overall risk V determination
- Value at Risk Method used to sort out extraordinary combinations with a confidence interval of 0.95

Power Transformers in the 380kV-level in the TNM

Age distribution of power transformer

- 103 Power transformers
 - 25 380kV/220kV PTR
 - 78 380kV/110kV PTR
- Investment Costs:

380 kV / 110 kV (350 MVA) 3,500,000 € 380 kV / 220 kV (1000 MVA) 9,000,000 €

Comparison VDN & CIGRE

- Young PTR overrated
- Old PTR (AGE > 35 Years) underrated

Risk Assessment is wrong with VDN

Different activities of PTR investment strategies

Replacement (RP)

- Immediate renewal of the asset
- Hazard rate of new asset
- Original price to CAPEX

Refurbishment (RF)

- Renewal of bushings & tap changer
- Hazard rate reduction
- 20 % Original price to CAPEX

Usual Treatment (UT)

- Normal inspection
- No costs allocated to CAPEX
- No Scrapping Risk

Different activities of PTR investment strategies

Risk-minimizing multiple-choice knapsack problem strategy

$$Min \, VaR = \sum_{i=1}^{N} \sum_{j=1}^{3} V_{ij} \cdot x_{ij}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{3} C_{ij} \cdot x_{ij} \le LB$$

$$\sum_{j=1}^{3} x_{ij} = 1$$

$$x_{ij} \in \{0,1\}$$

Min VaR	Minimal summarized VaR
V_{ij}	Asset VaR by activity <i>j</i>
LB	Investment budget
C_{ij}	Activity $cost j$ for asset i
x_{ij}	indicates which activity <i>j</i> is used for which asset <i>i</i>

For an efficient solution of the equations the solution algorithm of Sinha and Zolters is used.

Conclusions & further work

- Refurbishment for old PTR (AGE 40+) is an bad investment
 - Residual risk through scrapping by core failures is to high
- the CIGRE hazard rate values have an higher age-dependency
- Change in legal situation to promote refurbishment
- 380 kV /220 kV PTR outages have an higher impact on the transmission system

- Revised risk assessment for power transformers is needed!
- Refurbishment only for mid age PTR (30-40)

End

Thank you for your attention.

