

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Distributed Real-Time Electric Power Grid Event Detection and Dynamic Characterization

Raymond de Callafon, Charles H. Wells

University of California, San Diego & OSIsoft

CIGRE Grid of the Future Symposium, Oct. 19-24, 2014, Houston, TX

email: <u>callafon@ucsd.edu</u>, <u>cwells@osisoft.com</u>

UCSD Phasor Measurement System

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Multiple PMUs currently on UCSD campus
- Installation of 20 additional microPMUs
- Lot of data being generated

Objectives:

- Automatically detect and mark events
- When event occurs, model dynamics

D | Mechanical and OS | Aerospace Engineering

CIGRE GoTF Symposium, Callafon & Wells

Mechanical and

Jacobs | Aerospace Engineering

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Not only applicable for UCSD PMUs (example: WECC May 30 event)

- How do we detect individual events?
- Can event detection be distributed on each PMU?
 How cont
- How can we dynamically quantify these events?

May 30 data: 972000 data points (30Hz sampling noon-9pm)

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Approach is based on dynamic and statistical analysis of PMU data

- Assume PMU observation is linear combination of:
 - Main event signal filtered by grid dynamics
 - Small/random events filtered by grid dynamics

What's new here:

- Use knowledge on main modes (grid frequency and damping)
- Compute optimal detection signal by reconstruction of (filtered) main event signal

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Starting from initial dynamics

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Starting from initial dynamics
 - Invert signal mapping

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Starting from initial dynamics
 - Invert signal mapping
 - Model noise as output noise

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Starting from initial dynamics
 - Invert signal mapping
 - Model noise as output noise
 - Add fixed noise filter (low pass)

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Starting from initial dynamics

- Invert signal mapping
- Model noise as output noise
- Add fixed noise filter (low pass)
- Minimize variance of OE signal

Jacobs

Mechanical and

Aerospace Engineering

T. July

1/Go

 $G(\theta)$

Jacobs

Go/Ho

Mechanical and

Aerospace Engineering

Ho/Go

Go/Ho

 $[t, \theta]$

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Starting from initial dynamics

- Invert signal mapping
- Model noise as output noise
- Add fixed noise filter (low pass)
- Minimize variance of OE signal
- Define a Filtered Rate of Change (FRoC) signal f(t) for detection via differentiation (high pass) filter H

f(t)

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Starting from initial dynamics

- Invert signal mapping
- Model noise as output noise
- Add fixed noise filter (low pass)
- Minimize variance of OE signal
- Define a Filtered Rate of Change (FRoC) signal f(t) for detection via differentiation (high pass) filter H
- End Result:

11

- f(t) = H(q)G(q)L(q)PMU(t)
- f(t) has minimum variance
- f(t) can be used for detection

Jacobs

Aerospace Engineering

Event detection – Illustration

OF CALIFORNIA, SAN DIEGO UNIVERSIT Y

Jacobs School of Engineering

CIGRE GoTF Symposium, Callafon & Wells

UCSD Event detection – Application to WECC

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Automatic Event Detection

- Models Go and Ho estimate ("learned") from previously measured disturbance
- Minimization of prediction error via standard recursive optimization
- Event detection via threshold on
 Filtered Rate of
 Change signal

Mechanical and

Aerospace Engineering

Jacobs

CIGRE GoTF Symposium, Callafon & Wells

FRoC Signal – what's the big deal? OF CALIFORNIA, SAN DIEGO UNIVERSI

Jacobs School of Engineering

Small thresholds with small FRoC(k)[Hz] 60.05 [Hz] 60 59.95 [Hz] 60 during ambient behavior 59.9 Detection of 16:32:59 16:27:00 16:30:00 16:35:59 16:38:59 events via: time Set threshold based 0.01 FRoC on ambient data threshold 0.005 FRoC [Hz/s] FRoC(k) outside threshold for m -0.005 consecutive points -0.01 16:27:00 16:30:00 16:32:59 16:35:59 16:38:59 time Classify event by saving/analyzing N data points Mechanical and Jacobs Aerospace Engineering

CONTRACTION OF CALIFORNIA, SAN DIEGO FROC Signal – what's the big deal?

Jacobs School of Engineering

Compare with ROCOF

- Much larger than FRoC(k)
- More false alarms

Mechanical and

Aerospace Engineering

Jacobs

UCSD Once event has been detected: analysis

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

Automatically:

- Detect event.
 (via threshold on Filtered Rate of Change signal)
- Estimate parameters.
 Frequency,
 Damping, and
 Modal Participation
 from a
 Dynamic Model.
 (ring down analysis)

Comparison of actual event in data and simulated event

UCSD | Mechanical and Jacobs | Aerospace Engineering

UCSD Analysis of Events - Realization Algorithm

UNIVERSITY OF CALIFORNIA, SAN DIEGO

F(k) = Cx(k)

Jacobs School of Engineering

Approach:

Assume observed event in frequency F(t) is due to a deterministic system

$$x(k+1) = Ax(k) + Bd(k)$$

Discrete-time model

where (unknown) input d(t) can be `impulse' or `step' or `known shape'

- Store a finite number of data points of F(t) in a special data matrix H
- Inspect rank of (null projection on) H via SVD and determines # modes
- Compute matrices A, B and C via Realization Algorithm.
- Applicable to multiple time-synchronized measurements! (multiple PMUs)
 End Result:
- Dynamic model (state space model) can be used for
 - Simulation: simulate the disturbance data
 - Analysis: Compute resonance modes and damping (from eigenvalues of A)

Realization Algorithm – SVD

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- SVD can be computed by a numerically stable algorithm
- HOWEVER, SVD of Hankel matrix H will only be (ideally)

$$H = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}, \quad \Sigma_1 = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_n), \quad \sigma_j > 0$$

if there is NO noise on measurements F(t)

In general:

$$H = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$
$$\Sigma_1 = \operatorname{diag}(\sigma_1, \cdots, \sigma_n)$$
$$\Sigma_2 = \operatorname{diag}(\sigma_{n+1}, \cdots, \sigma_m)$$
$$\sigma_{n+1} << \sigma_n$$

SOLUTION: decide on effective rank via threshold of singular

values

18

CIGRE GoTF Symposium, Callafon & Wells

₹UCSD

More fun with May 30th event

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Use FRoC for automatic detection of event and begin of event
- Use all PMUs simultaneously to estimate a multiple output model
- Assume disturbance d(t) is step disturbance
- Use 900 data points (30sec)
- Compute SVD
- Compute dynamic model
- Fn = 0.231811 Hz, D = 0.068505. Fn = 0.392715 Hz, D = 0.082505. Fn = 0.432960 Hz, D = 0.050235. Fn = 0.663981 Hz, D = 0.083615. Fn = 0.799182 Hz, D = 0.073641.

19

UCSD | Mechanical and Jacobs | Aerospace Engineering

₹UCSD

More fun with May 30th event

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Use FRoC for automatic detection of event and begin of event
- Use all PMUs simultaneously to estimate a multiple output model
- Assume disturbance d(t) is step disturbance
- Use 900 data points (30sec)
- Compute SVD
- Compute dynamic model

Fn = 0.242626 Hz, D = 0.097361. Fn = 0.373111 Hz, D = 0.065633. Fn = 0.433994 Hz, D = 0.092822. Fn = 0.670271 Hz, D = 0.057847.Fn = 0.759634 Hz, D = 0.043654.

Jacobs

Mechanical and

Aerospace Engineering

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

- Automatically detect when a disturbance/transient event occurs
- Automatically estimate Frequency, Damping and Dynamic Model from disturbance event.

Main Features:

- Automatically detect event:
 - Predict ambient Frequency signal "one-sample" ahead
 - Observe when prediction deviates for event detection via FRoC signal
- Automatically estimate:
 - # of modes of oscillations in measured disturbance
 - Estimate frequency and damping of the modes
 - Put results in dynamic mode

All done in real-time!

Software development

Mechanical and

Aerospace Engineering

₹UCSD

Jacobs

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Jacobs School of Engineering

📣 MATLAB 7.5.0 (R2007b)	
File Edit Debug Desktop Window Help	
🛅 🖆 👗 🖏 🛱 🤊 🕅 🎒 🗊 🖹 🛛 Current Directory: D:\data\NASPI\PMUCSD 💽 🖻	
Current Directory: D:\data\WASPIPMUCSD	
▲ Start	OVR
	· · · · ·

