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SUMMARY

With the emerging innovations to the electricity infrastructure, high levels of penetration of 
renewable energy, and an emphasis on competitive pricing, it will become necessary to 
optimize the safety margins presently allowed, and use existing equipment as optimally as 
possible. Maintaining reliable service and implementing emergency defense plans during 
major unintended disturbances and intended attacks is critical with the growth of the electric 
power network and its information infrastructure. The development of reliable and scalable 
intelligent monitoring and control algorithms, and situational intelligence (beyond situational 
awareness (SA)) technologies are needed as synchrophasor measurement devices are 
deployed for operation sense-making, decision-making and implementing actionable controls. 
The synchrophasor data can be used in model validation, improving models used in state 
estimators, and many EMS applications. Situational intelligence allows for real-time 
monitoring and faster than real-time simulation of power system operation. This paper 
presents online near-real-time and predictive applications of synchrophasor data in 
transmission control centers. 
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INTRODUCTION 

The electric power grid operation is always under changing operating conditions – every 
second, minute and hour of the day. This is driven today by the changes in demand which 
instantaneously changes electric power generation resulting in dynamic changes in power 
flows, voltages and currents, across the entire interconnected electric power grid. It is well 
known, and proven by the number of power system blackouts that have occurred in recent 
years, that modern power systems are often less secure than systems of the past. The reasons 
for this are several and include the reduced investment in transmission infrastructure over the 
last twenty-five years, the proliferation of “economically sited” independent power producers, 
unusual power transfers driven by market activities, the use of complex controls and special 
protection systems (SPS), and a general lack of system-wide oversight regarding reliable 
planning and operation. It may be known that SPS have prevented blackouts in other parts of 
the world; the Eastern Interconnection in North America has suffered some blackouts from 
the failure of SPS [1].  

The above mentioned problems cannot be addressed quickly or without significant financial 
investments and as a result, operators facing increasing security challenges are looking for 
innovative solutions to improve system operations in a timely and affordable manner. The 
primary challenging responsibility for the operators in the control centers is to maintain the 
integrity of grid which means ensuring that the operating conditions of various elements of 
the grid are safe, not violating any safety limits, or at minimal risk of losing any critical 
elements if any unforeseen contingency had to occur, while still meeting generation 
requirements for the ever-changing customer demand. The 1965 and 2003 blackouts of the 
North American power grid identified the need for control centers to be equipped with 
visualization displays and situational awareness tools to provide system operators with 
enhanced view of the real-time grid conditions of the large electrical interconnection.  

Situational awareness (SA) is the perception of elements in the environment within a volume 
of time and space, the comprehension of their meaning, and the projection of their status in 
the near future [2, 3]. SA is an intermediate process in assessing the status of the system in 
order to make intelligent decisions for future development [4]. Sense-making is related to 
situational awareness and it is pointed out in [5] that SA combined with understanding leads 
to sense-making. Intelligent sense-making is essential for maintaining and enhancing the 
stability, security and safety of smart grid [6]. In [7], Greitzer et al. provide a sense-making 
perspective on situational awareness in power systems operations which is distinct from 
traditional human factors research, and focuses on clarifying priority, rather than volume, of 
data for decision making. It is a common consensus that wide area monitoring and control is 
vital to situational awareness (SA) in smart grids [8, 9].  More recently the rapid integration of 
renewables sources of energy such as wind and solar, and energy storage, and the online 
streaming of big data has accelerated the need for improved real-time power system 
operations in control centers. 

Situational intelligence (SI) is seeing ahead how the situations will unfold over time. In other 
words, SA systems present situations based on some measurements of current states at time t.
Whereas, SI uses SA at time t and predictions of future states to predict SA for a time t+ t.
Control centers need to handle big data, variable generation and a lot of uncertainties, and will 
need  SI, that is to derive SA (information, knowledge and understanding) at time t and 
project it into time t+ t. This paper presents online near-real-time (coherency analysis) and 
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predictive (voltage stability load index) applications of synchrophasor data in transmission 
control centers. 

SITUATIONAL INTELLIGENCE 

Deriving information from phasor measurement unit (PMU) and other sensor data, knowledge 
from information and understanding from knowledge are important characteristics needed to 
realize situational intelligence (Fig. 1). Situational awareness present understanding of system 
states in context of time and space, and provides near-term projections of the states. Decision-
making in real-time is critical since secure information and time is limited, and consequences 
of incorrect decisions will have adverse effects. Therefore, fast adaptive/robust tools are 
needed.  

Fig. 1.  Transformation from Data to Information to Knowledge to Understanding. 

Situational intelligence is beyond situational awaremess (Fig. 2). It uses predictive modeling 
tools based on current and past measurements to infer future states, information, knowledge 
and understanding. Based on available computational capabilities, the prediction time step can 
be in order of fractions of seconds, few seconds, fractions of minutes, few minutes, etc.  
Realization of situational intelligence in transmission systems control centers for assistance in 
real-time operations will require specialized computational paradigms and implementations 
including high-speed parallel processing platforms to satisfy real-time requirements. 

Fig. 2.  SA system and its integration into power system operations. 
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SI APPLICATIONS IN TRANSMISSION CONTROL CENTERS 

Some key challenges associated with real-time stability assessment in power systems [1, 10] 
are: the large numbers of contingencies and the sequence of events typically needed to 
provide accurate stability assessment; the wide range of operating conditions and topology of 
the power system (smart grid), which makes the operating space very complex; the speed by 
which the stability assessment can be assessed in real-time; the large number of 
measurements available in the power system; the lack of methods to enhance the correlations 
between measurements and the stability assessment; the lack of an effective assessment index; 
and meaningful system operator visualizations. 

With the synchrophasor deployment in many utility networks, data from phasor measurement 
units is available for SI implementation. PMU data is transmitted to phasor data concentrators 
(PDCs) and, may be to a super PDC(s), as shown in Fig. 3. Applications are executed either at 
the PDC (control center), super PDC (ISO) or both. The transmission of data from the 
respective PMU stations to the control centers will acquire some communication latency and 
the application execution will increase the latency. Therefore, the presentation of data, 
information or knowledge in a control center to a system operator is post-real-time of the 
system status or event. Thus, today there is no real-time monitoring capability in control 
centers. With SI technology implementations, real-time monitoring is possible.  

Fig. 3.  Synchrophasor network for monitoring electric power system operation. 

Online Voltage Stability Monitoring 
Voltage stability monitoring in smart grids based on data from phasor measurement units has 
been developed. The method used estimated the voltage stability load index (VSLI) using a 
recurrent neural network (RNN) known as the echo state network (ESN). It has the power of a 
RNN but simpler learning requirements. Echo state networks have been trained with ease and 
precision without changing the weights between hidden-layer and input-layer. 

A typical ESN structure is shown in Fig. 4. An ESN includes input, hidden (internal) and 
output layers with different transfer functions (linear, sigmoidal, etc.). Like the RNNs, the 
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input vectors are fed into the neural network together with the last output from hidden layers. 
For example, when u(t +1) is an input vector at time step (t +1), activations of internal units, 
x(t + 1), are generally updated according to 

x(t + 1) = f (Win. u(t + 1) + W · x(t) + Wback · y(t)).                  (1)

Where f = ( f1, . . . , fn) are the internal unit’s activation functions (sigmoids, etc.), W, Win and 
Wback are hidden-hidden, input-hidden and output-hidden connections’ matrices respectively 
and y(t) is the output of the ESN. For the study carried out in this paper, there are no output-
reservoir connections and that means Wback is zero in (1).

Output units, (y(t + 1)), are used to extract interesting features from this rich “reservoir” of 
dynamics, thus only “reservoir”-output connections, Wout, are modified during the 
learning/training process. The generic output of the ESN is given as 

y(t + 1) = g(Wout(u(t + 1), x(t + 1))).        (2) 

where g(.) consists of sigmoids or tanh functions. All reservoir weights can be chosen at 
random. For the studies on this paper, there is no input–output direct connection and the 
output of the ESN is given as 

y(t + 1) = g(Wout, x(t + 1)).        (3) 

Since the structure of ESNs is similar with that of RNNs, the same procedure can be followed 
to train the ESNs. However, by fixing a priori the recurrent network connections and adapting 
only a feedforward read-out network, ESNs have the advantage of overcoming the difficulties 
in RNN training [11]. 

Fig. 4.  A typical ESN architecture with input layer, hidden (internal) layer and output layer. 

The VSLI estimation using ESN was studied on a modified IEEE 68-bus 16-machine power 
system with a large wind farm and distributed SmartParks (Fig. 5). SmartParks are plug-in 
electric vehicle parking lots with the capability to allow for vehicles to charge and discharge 
their batteries. The structure of the ESN for VLSI estimation for the IEEE 68 bus power 
system is shown in Fig. 6. With this architecture, it is possible to provide VLSI estimation at 
all the load buses in Fig. 5 for both normal and islanded operating conditions. For normal 
conditions a single ESN is used with the switch position at 1. In the case of islanded mode of 
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operation the switch position is at 2, and individual ESNs provide the VLSI estimates for the 
respective load buses in each island.  
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Fig. 5.  A modified IEEE 68-bus power system with a wind farm and SmartParks. 
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Fig. 7 shows that the ESN approach successfully estimates the VSLI in a smart grid for load 
variations caused by the PEVs, mainly due to charging and discharging of a large number of 
plug-in electric vehicles. The top graph shows the PEV initially charging (-ve power) and 
gradually entering into the discharging mode (+ve power). The estimated VSLI at three buses 
(35, 39 and 44) are shown. Bus 39 is load bus in close proximity to the wind farm bus. Bus 35 
is the PEV bus and Bus 44 is load bus between the Bus 39 and Bus 35. It can be observed that 
as the PEV discharges the VSLI becomes lower at these buses compared to when it was 
charging.  

During this simulation the loads at the remaining buses were fixed. In a production (practical) 
power system it is possible for several load buses to experience load variations concurrently. 
The presented ESN approach in Fig. 6 will still work since measurements from PMUs at all 
the load buses are available as inputs to the ESNs. 

More details on this application can be found in [12]. 
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Fig. 7  ESN estimation of VSLI index with varying PEV demand. 

Online Coherency Analysis of Synchronous Generators 
In multi-machine power systems, synchronous generators tend to oscillate in several coherent 
groups, each group being equivalent to a virtual generator. Coherency analysis is fundamental 
to wide area control of large power systems. Coherency analysis is performed offline and the 
groupings are used in the development of auxiliary control signals. However, in response to 
various events at different operating conditions, the coherent groups may differ, and it has 
been observed that post disturbance during the transient the generators switch groups. Thus, it 
is important to develop the analysis to be online and be able to recognize the switching of 
groups by the generators in the network. A combination of K-harmonic means clustering 
(KHMC) and a moving windowing approach have been applied for online coherency 
grouping based on real-time speed data from PMUs located at generator stations [13]. For a 
100ms three phase short circuit applied at bus 8 (Fig. 8) and based on the speed deviations of 
generators, the algorithm described in [13] showed that generators switched groups during the 
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post-disturbance recovery (see Table I for the groups and its members at the respective time 
instances).  

Fig. 8 . IEEE 68 power system with coherency results (color shades) shown based on an offline 
approach. 

TABLE I: COHERENCY GROUPING RESULT

Group 
index

Offline
Clustering 

during 
0~18s

Online 
Clustering 

at 8s

Online 
Clustering 

at 10s

Online
Clustering

at 15s

1 G1, G8 G1,G8 G1,G2,G3, 
G8,G10,G11,G12,G

13

G1,G8 

2 G2,G3 G2,G3 G4,G5,G6, 
G7,G9 

G2,G3 

3 G4,G5,G6, 
G7,G9 

G4,G5,G6, 
G7 

G14,G15, 
G16 

G4,G5,G6, 
G7,G9 

4 G10,G11 G9 G10,G11, 
G12,G13

5 G12,G13 G10,G11 G14,G15, 
G16 

6 G14,G15, 
G16 

G12,G13

7 G14,G15, 
G16 

For a production power system the generators’ frequency data obtained from the PMU is 
available in control centers through a phasor data concentrator such as OpenPDC. The 
frequency/speed data can be pre-processed, if necessary, and applied to the online KHMC 
coherency algorithm. The data presented in Table 1 above can be viewed in a real-time 
control center using an advanced visualization such as that shown in Fig. 9. Fig. 9 is a 
snapshot of a movie. This visualization was developed by the Real-Time Power and 
Intelligent Systems Laboratory researchers at Clemson University [14]. The essence of this 
display on online coherency grouping is to alert the system operators of any abnormal 
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oscillations that may arise in the system when under stress. Adverse interaction by power 
system stabilizers or predetermined wide control signals could rise in a multimachine power 
system when coherency of generators are not correctly identified when designing oscillation 
damping controllers.   

Fig. 9.  A real-time visualization display for coherency grouping. 

CONCLUSION 

Intelligent systems that increase the abilities to plan in near-real-time, to learn, to understand 
complexity, to share understanding across neighboring/wide areas, and to take appropriate 
actions to ensure system stability and security are needed in smart grid’s transmission and 
distribution control centers. Situational intelligence based on PMU data will provide real-time 
monitoring and faster than real-time simulation of power system operation. System operators 
in real-time control centers will benefit from SI implementations and visualizations for 
making intelligent time critical decisions. Besides assisting system operators, SI will 
transform automatic control systems to their next level of performance. 
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