
E-mail: cli27@utk.edu 

Power System Dynamics Prediction with Measurement-Based AutoRegressive 
Model 

 
 
C. LI1*, J. CHAI1, Y. LIU1                  N. BHATT2, A. DEL ROSSO2, E. FARANTATOS2 

1University of Tennessee, Knoxville    2Electric Power Research Institute 
 Knoxville, TN USA                                Knoxville, TN USA 
 
 
SUMMARY 

The rapidly growing deployment of Phasor Measurement Units (PMU) makes it feasible to 
analyze power system dynamic behavior in a real-time environment, and even prediction or early 
detection of instability, using synchrophasor data. Autoregression is an important technique to extract 
relationships among measurement signals and is a powerful tool of system identification.  

In this paper, a measurement-based Multivariate AutoRegressive (MAR) model is presented. It is 
designed to build a mathematical model for several measurement signals. The MAR model is a linear 
model. It is suitable for a linear condition which holds the majority of the time with power system 
operations. With a given model order and study signals, the MAR model can be trained to minimize 
overall error. Once it is trained, it can be used to predict the dynamics of study signals recursively with 
some initial dynamics data points.  

The main challenge in training the MAR model is that the number of unknowns is proportional to 
the product of the signal number and the model order. Though more signals and higher order usually 
give a better prediction result, too many unknowns cannot be solved with a limited number of 
measurement data points. This problem is addressed in this paper with the delayed correlation 
coefficient technique. By analyzing the structure of the MAR model, the contribution of all input 
signals can be measured with a delayed correlation coefficient. Those signals with high correlation 
coefficients contribute more than signals with lower coefficients. To reduce the number of input terms, 
only the signals with high coefficients are chosen as inputs.  

To verify the accuracy of the MAR model and model reduction technique, a 23-bus model is 
examined. Simulations show that the MAR model can provide an accurate prediction for events of a 
similar type. And model prediction can be dramatically reduced with the correlation coefficient 
technique while keeping model accuracy. 

To conclude, the MAR model proposed in this paper is an attractive approach for power system 
dynamics prediction. It can be trained with pure measurement data. Though the MAR model is 
complicated for too many study signals, its complexity can be reduced with the delayed correlation 
coefficient technique without losing accuracy. 
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I.  INTRODUCTION 

A power system is subjected to small or large disturbances at all times. According to 
power system reliability standards [1], major disturbances should be limited in a small area 
and cleared with relay devices. However, a power system can lose synchronism in some 
extreme cases such as cascading failures which may lead to disastrous social and economic 
consequences [2]. Predicting system dynamics after an event happens can help to assess and 
maintain the security of the grid.  Physical model-based time-domain simulation is the 
primary method to assess system dynamic response under events[3]. Though the simulation-
based method hass more detailed representation of the grid (compared to a measurement-
based technique), and the ability to simulate “what-if” scenarios, including contingencies, it is 
difficult to update the model to the continuously evolving operating conditions, and 
simulation models, especially load models, are not accurate for on-line applications[4]. 

With the growing deployment of Phasor Measurement Units (PMU) [5] and Frequency 
Disturbance Recorders (FDRs) [6], a massive amount of measurement data of power system 
dynamics are recorded. The measured phasor data are more representative of actual system 
conditions than time-domain simulation results because they are obtained from directly 
measured voltage and current waveforms. The advantage of synchrophsor data reveals a 
possible application of studying power system with pure measurement data. 

There are mainly two approaches to predict power system dynamics with measurement 
data. One is combining measurement data with partial model parameters, e.g., generator 
impedance, inertia, etc[7]-[8], the other is predicting dynamics with pure measurement data 
by treating a power system as a black-box with finite measurement points of PMU or FDR[9]-
[11]. Artificial intelligence based methods also fall in the latter category[12]. 

This paper deals the dynamics prediction problem with system identification, and is 
organized as follows. In section II, a Multivariate AutoRegressive (MAR) model is introduced 
and the dynamics prediction procedure with the MAR model is proposed. Model training and 
reduction issues are discussed in section III. In section IV, some prediction examples are 
given and the model reduction technique is verified. Conclusions are drawn in section V.  

II. THE PREDICTION MODEL WITH THE MULTIVARIATE AUTOREGRESSIVE MODEL 

A.  Multivariate AutoRegressive Model 

System identification (SI) is an important method of building mathematical models for a 
dynamic system[13]. For a linear time-invariant system sampled at a time interval of h, a 
general SI transfer function structure is  
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Here, y(t) is the output signal which is the observable (measurable) system response of 
interest, u(t) is the input signal which is a disturbance signal of the system or a stimuli 
manipulated by the observer, and e(t) is a sequence of independent random variables. na, nb, 
nc, nd, and nf are orders of each part. q-1 is a backward shift operator and q-1y(t)= y(t-h).  

For power systems, dynamics response of frequency, voltage magnitude and phase angle 
is of key interest and thus can be chosen as output signals of an observation model (1). 
Though they can be directly measured with PMUs or FDRs, the disturbance signals of the 
event, i.e., input signals, are hard to measure due to the diversity of events. Since power 
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system dynamic quantities affect and are affected by other measurement signals, an 
observation model can be developed to model the interaction between those measurement 
signals by choosing one signal as an output signal and treating other signals as input signals. 

With p interactional measurement signals y1(t), …, yp(t), if yi(t) is chosen as an output 
signal and all other signals are treated as input signals, a Multi-Input Single-Output (MISO) 
MAR model with C(q)=1, D(q)=1 and F(q)=1 can be developed as 
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where nai is the order of signal yi(t) and nbji is the order of signal yj(t) when yi(t) is the output 
signal and yj(t) is the input signal. k is the index of time delay. 

In the MAR model, the orders of each signal can be different. For simplicity, a uniform 
order n can be chosen for all signals. With this manipulation, (3) can be rewritten as 
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Let biik = -aik, we have 

     
1 1

p n

i ijk j i
j k

y t b y t kh e t
 
    .                                                (5) 

Equation (5) can be further expressed in vector form as 
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where superscript T indicates transpose, and 
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Choosing each measurement signal as output signal, we have 
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Since the MISO MAR model (7) is part of the MIMO MAR model (9), (7) can be treated 
as a sub-model of MIMO MAR model (9) and is denoted as “sub-model i”. 

B.  Prediction Procedure 

In (3), the time delay index k starts from 1 and yi(t) is totally determined by historical 
data, i.e., data at time prior to time t. So, equation (9) give a one-step prediction of a dynamic 
system. In equation (9), the random part e(t) corresponds to the unmeasured disturbance 



  4 
 

signals and is difficult to model. For simplicity, the ei(t) part is neglected and the MAR model 
becomes 
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Once the MAR model is obtained, dynamics can be predicted recursively based on the 
flowchart in Fig. 1 where tmax is the length of a study time window. 

 
Fig.1 Flowchart of dynamics prediction with MAR model 

III. MODEL TRAINING AND REDUCTION 

C.  Training of the MAR Model 

The MIMO MAR model (9) is comprised of p sub-models, and can be developed by 
training each sub-model separately. For sub-model i of (7), m-n equations can be written as 
(12) with an event of m measurement data points. 
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It can be re-written as 
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To get the best MAR model with (13), the error part Ei should be minimized. Parameter 
Bi can be estimated with least square error estimator to minimize the error part Ei, 
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D.  Reduction of MAR Model 

The MISO MAR model developed with (7) includes n parameters for each input signal yj. 
It is called full MAR model with np unknowns. With more and more measurement units 
deployed, the number of unknowns increases linearly with measurement number p. Though 
the MAR model is linear, too many unknowns may cause huge computation burden and 
model complexity, and thus prevent the full MAR model from being applicable for online 
applications. 

The increase of number of unknowns  leads to a possible problem of under-determinacy. 
There are m-n equations (constraints) but np unknowns in (7) for a MISO MAR model. If m-
n<np (or m-n≥np and Ai is singular), (12) is underdetermined and mathematically unsolvable. 
To overcome this difficulty, either the data point number should be increased or the number 
of unknowns should be reduced.  

However, m cannot be increased arbitrarily. In most cases, a disturbance is damped in 
20s or shorter. The time window length for model training is usually 10s to 20s. Too long of a 
time window may include data points of the new steady state and make Ai singular. Under a 
specific PMU reporting rate, the data length m is limited. So, m cannot be increased unless 
PMU is reporting at a higher rate. It is more practical to reduce the number of unknowns than 
to increase the measurement data length. 

Since the number of unknowns is np, there are two direct ways to reduce the complexity 
of a MISO MAR model. One way is to reduce the model order n. However, n is a key 
parameter of the MAR model, and dynamics prediction accuracy is greatly affected by the 
model order. In general, a higher order usually yields better training accuracy and prediction 
accuracy. To keep high prediction accuracy, the model order cannot be dramatically reduced. 

The other way is to reduce the number of input signals. The relationship between the 
output signal yi and different input signals yj is different. Those input signals which are more 
related to the output signal contribute more to the output signal. To measure the contribution 
of each input signal, a zero-delay Correlation Coefficient (CC) is introduced in [14] to select 
the input signals. The zero-delay CC is defined as  
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With the method proposed in [14], input signals with high zero-delay CC are selected as 
effective input signals and other signals are completely removed from (7). 

The main problem of this method is that it does not differentiate the input signals and 
specific input terms of each input signal. For each input signal yj, there are n input terms of 
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output signal yi in (7), i.e., bij1yj(t-h), bij2yj(t-2h),…,and bijnyj(t-nh). Those input terms are the 
delayed time series of original signal yj. If the zero-delay CC rij is high, it is not necessary that 
all the n delayed input terms of yj contribute significantly to output signal yi, and vice versa. It 
is preferable to study the contribution of each input term specifically, instead of the overall 
contribution of each input signal. 

To overcome the drawbacks of the zero-delay CC, the delayed CC of each input term is 
used in this paper to find a better combination of input terms. Take a k-delay input term of 
signal yj, i.e., yj(t-kh) of (7), for example, the k-delayed CC between the input signal yj and 
output signal yi is 

    

    
1

22

1 1

=

m

i j
l k

ijk m m

i j
l k l

y lh y l k h
r

y lh y l k h

 

  



 




.                                        (16) 

The delayed CC examines the correlation of each delayed input term with the output 
signal. Comparing (15) with (16), it can be found that the zero-delay CC is symmetric, i.e., rij 
=rji, however, the delayed CC is asymmetric, i.e., rijk≠rjik. This leads to the main difference 
between the input selections with the two CCs. With zero-delay CC, if signal yj is highly 
correlated with signal yi, signal yj is the input signal of signal yi, and vice versa. For delayed 
CC, if k-delay input term of signal yj is highly correlated with signal yi, yj(t-kh) can be 
selected as the input term of signal yi. However, if the k-delay input term of signal yi is not 
highly correlated with signal yj, it does not have to be selected as an input term of yj. So, B of 
(11) does not necessarily have symmetric structure when delayed CC is used for input term 
selection.  

With the delayed CC, it is not necessary to find the optimal model order n. With a higher 
model n, all input terms can be examined with the delayed CC and only those with the 
delayed CC higher than a user-defined threshold are selected for developing the sub-model 
of yi. The delayed CC lies in the range of [0, 1] and a threshold higher than 0.9 is usually 
suggested for input term selection. This will be further examined in section IV. 

IV. EXAMPLES 

A 23-bus model is chosen as a test system. The system data can be found in the PSS/E 
manual[15]. The simulation time step is set as half cycle (1/120s). Frequency, voltage and 
phase angle of all 17 PQ buses are monitored. In this section, a full MAR model of those 51 
signals is developed with a 15s-long data, under 1% load increase event and prediction is 
made for a 5% load increase event. The order of each signal is 13. Additionally, suppose the 
data reporting rate of 23-bus model is 30Hz, which can be achieved by down sampling the 
120Hz simulation data, another reduced MAR model is also developed with 15s-long 
dynamic data with threshold of delayed CC of 0.9. Prediction of voltage and frequency of bus 
151 are shown in Fig. 2 and 3.  

In Fig. 2 and 3, diamonds on the dashed lines show where prediction of the full MAR 
model starts when data rate is 120Hz. Comparing the dashed lines with actual response, it can 
be concluded that the full MAR model can predict the dynamics with high accuracy. 

The squares in Fig. 2 and 3 show where prediction of the reduced MAR model starts 
when data rate is 30Hz. In the reduced MAR model, there are only 44 unknowns for the 
submodel of signal 1 (frequency of bus 151). The submodel with the most unknowns is signal 
15 (phase angle of bus 201), which is constituted by 190 unknowns. The submodel with the 
most unknowns is signal 14 (voltage of bus 201), which consists of 35 unknowns. The 
number of unknowns of the reduced MIMO MAR model is 5030 which is about 15% of the 
full MAR model. Though the MAR model is dramatically reduced, it still provides good 
prediction result in Fig. 2 and 3.  
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Fig.2 Frequency dynamics prediction with reduced model  Fig.3 Frequency prediction with reduced model 

V. CONCLUSIONS 

With more and more PMUs, massive amounts of measurement data give an alternative 
approach to study power system dynamics with real response. The MAR model proposed in 
this paper is promising for power system study of linear conditions with pure measurement 
data. It can be easily updated online with typical events. To improve its feasibility, a model 
reduction technique with delayed correlation coefficient provides a good guideline for input 
selections. Simulations show that the accuracy of prediction is high for test cases and the 
model reduction technique works well to select the most effective input terms. 
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