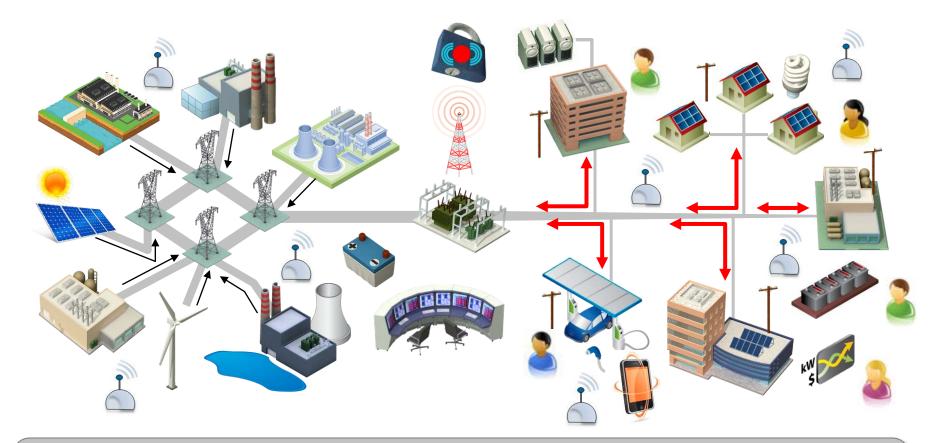


## Software Tools and Analysis Methods for Integrated T&D Systems

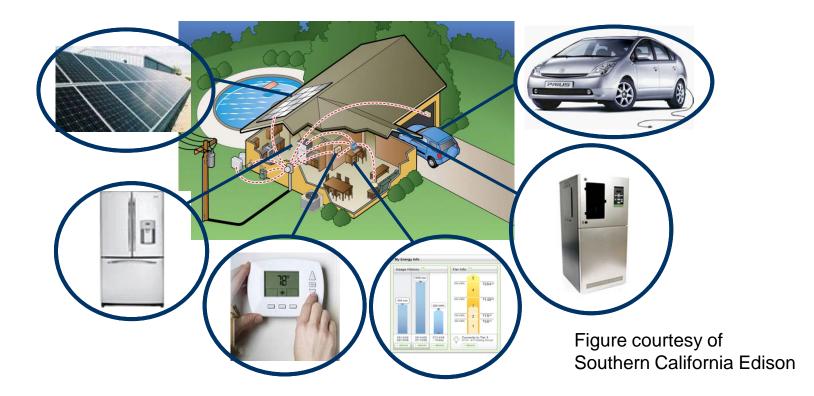
Mark McGranaghan Vice President, Power Delivery and Utilization






- 1. Introduction and Objectives Mark McGranaghan (EPRI)
- 2. Utility Perspective Kevin Jones (Dominion Resources)
- **3**. Software provider perspective Joe Hood (Siemens/PTI)
- University perspective Surya Santoso (University of Texas)
- R&D Perspective and New Approaches Jeff Dagle (PNNL)




## **Integrated Grid Vision**



Power System that is Highly Flexible, Resilient and Connected and Optimizes Energy Resources



## The Integrated Grid is about Enabling the Customer



# The integrated grid allows Local Energy Optimization to become part of Global Energy Optimization.



## How do we get there?



### **Informing Policy and Regulation**







## **The Second Decade of Synchrophasors**

## Five Dimensions to the Success of Synchrophasors for the *Next* Ten Years

CIGRE GOTF Symposium - Houston, TX Tuesday October 21, 2014 Kevin D. Jones, Ph.D.

© 2003 Dominion

## **The First Decade of Synchrophasors**

The Northeast Blackout of 2003 is arguably the strongest catalyst for the more recent success synchrophasors

- TVA Super PDC
  - Gave birth to the openPDC
  - Ready for primetime by the time the SGIG grants came around
- 2008 Hurricane Gustav at Entergy
  - Used synchrophasors to help support an island of ~250k customers
- Acknowledgement by the IEEE
  - C37.118 predates grant work
- Success of FNET
- SGIG & other stimulus grants
  - Dominion project completed **10 years & 5 days** after 2003 blackout





# What will be critical to success of synchrophasor technology over the *next* ten years? **Top Five Key Dimensions**

© 2003 Dominion

## **More Synchrophasors**

- Appears obvious but still needs said
  - Value in PMU footprints of all sizes but...
  - Small footprints yield niche applications while large footprints yield applications which are *widespread*, *interoperable*, *prolific*
- Championing sustainable continued deployment
  - Dominion has substation construction standards which dictate PMU/PDC installation for any control house visited for normal project work.
- Some deployment numbers
  - Original grant 80 PMUs, 39 PDCs, 21 Control Houses in total
  - Up to present day 141 PDCs
  - After the next 5 years ~300 Control Houses in total
  - Approximately 0.01% of total capital expenditure on PMUs over next 5 years

**Key Takeaway:** Synchrophasors are a fundamental, foundational technology. Bolt-on strategies won't see long term success in this space.



## **Enterprise Class & Operational Data Analytics**

## Three Components to Data Analytics

- Next Generation Grid Data Architectures
  - How you get/access/store/move/etc the data
  - Lots of great conversations across the industry right now (GPA, UTK, etc)
- Robust Synchrophasor Data Quality
  - Commitment to data quality is key
  - Need the '*complete package*' for data quality
- Synchrophasor Data Analytics
  - Synchrophasor data is full of information
  - Phasor data analytics impacts most business units in electric transmission
    - *Real time operations, asset management, planning, modeling, etc*

**Key Takeaway:** Data is an asset just like a TX or TL. To extract its full value, the complete package of grid data architecture, data quality, and data analytics are critical



## Mature Data Visualization

- Data vis. is important inside *and* outside operating room
- Varying degrees of maturity
- Data visualization should be simplistic to drive adoption/trust
  - Seeing PMU data in traditional forms can be very effective for adoption
  - Basic trending, strip-charting, schematic one-lines, frequency topos
  - Host visualization in common areas to 'make synchrophasor data real'
- Existing tools are not end-all-be-all of data visualization
  - Some have shot for the moon... and flopped
  - Some have seen success with simplistic visualization like basic trending, stripcharting, schematic one-lines, etc but this should not be the last word in data visualization for synchrophasors

**Key Takeaway:** Advanced visualizations aren't necessarily mature. Start with simple, trust building interfaces and add complexity as the end user evolves.



## A Total Pivot to Open Source

- Our industry has one of the lowest OSS utilization rates
- The evidence for the benefits of OSS are readily available
- Software vendors business models will start to transform
- Why Open Source?
  - Public Domain  $\neq$  Open Source
  - Generating user base provides mechanisms for growth and support
    - Its all about the numbers!
    - Utility industry is very specialized small numbers
  - University use increases user base and trains engineers of tomorrow
    - Bridges technology transfer gap; decreases cost of innovation
    - Young talent loves to code

**Key Takeaway:** *Open source software will be a game changer for the industry over the next ten years because of the user-developer.* 



## People

- People are at the heart of innovation
  - People make comprehensive substation standards
  - People develop/integrate/utilize word class data analytics
  - People digest information through mature data visualization
  - People form communities to develop the tools of our GOTF
  - People adopt new technologies
- Our industry has not yet mastered...
  - Workforce planning & talent acquisition
  - Self promotion synchrophasors need to be sexy!
  - Training programs & knowledge retention

**Key Takeaway:** Without the right people, any new tool or technology will fail. People are the most critical key to the GOTF



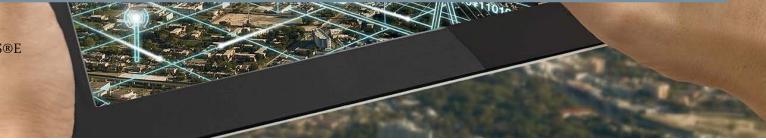
## Conclusion

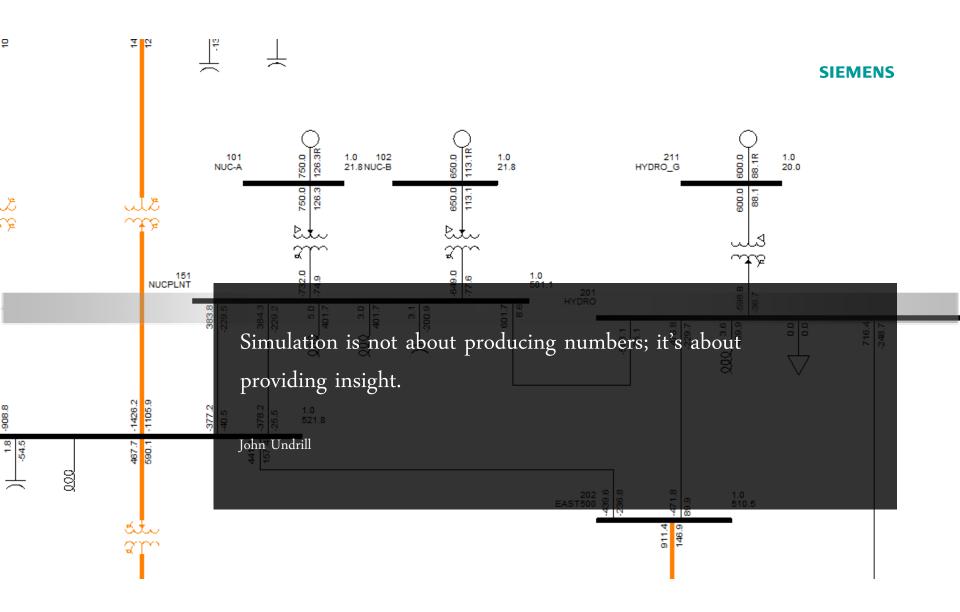
## 5 Keys to Success for Synchrophasors

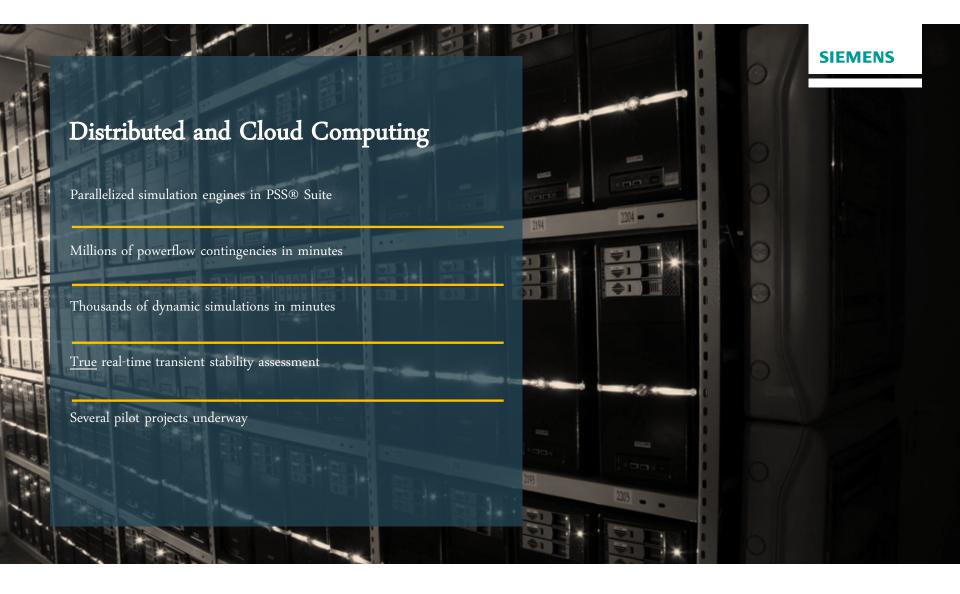
- More Synchrophasors
  - Organic continued deployment through strategic standardization
- Enterprise Class & Operational Data Analytics
  - Next gen. data arch. data quality, analytics for 'complete package'
- Mature Data Visualizations
  - Start simplistic  $\rightarrow$  build trust  $\rightarrow$  evolve
- A Total Pivot to Open Source
  - The rise of the *user-developer*
- People
  - Hire rockstars

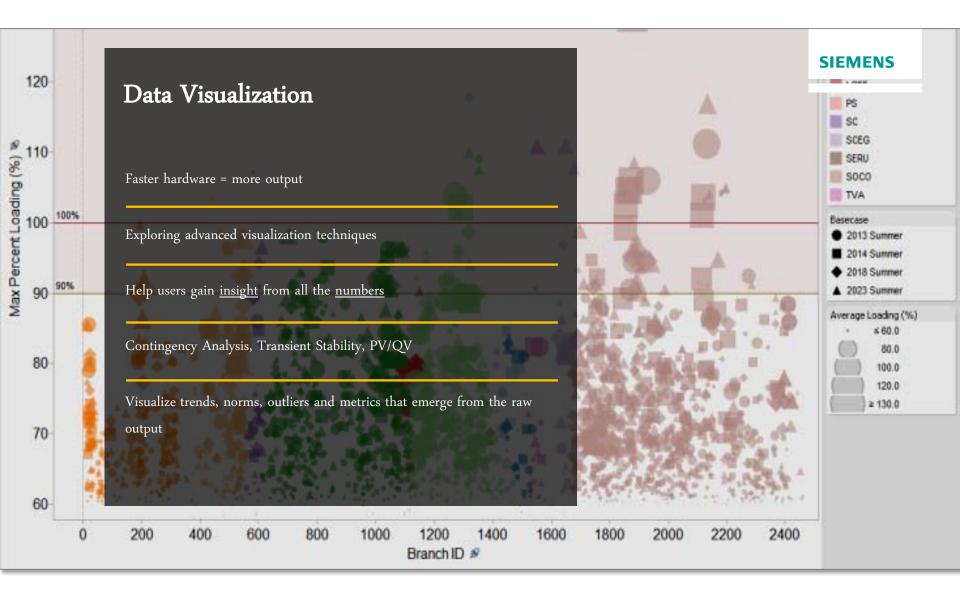


## Contacts


## For more information contact:


Kevin D. Jones, Ph.D. Electric Transmission Operations Planning Dominion Virginia Power 804-380-0658 304-767-4748 kevin.d.jones@dom.com




Joe Hood, PE Product Manager for PSS®E Siemens PTI









**SIEMENS** 

#### Blurred Lines:

• Operations and Planning

• Transmission and Distribution

PSS®ODMS and PSS®E solutions create a proven, robust link between

Operations and Planning

Powerful CIM-based model management

Node-breaker capability coming to PSS®E

PSS®SINCAL: Advanced distribution planning for distributed generation

and micro-grids

Advanced load models across PSS® Suite

**SIEMENS** 

#### Coming Soon

Webinar: CIMplify your Network Model Management with PSS®ODMS

- November 4, 2014.
- www.usa.siemens.com/network-model-managemen

#### PSS®E 34 with Node-breaker Modeling

- Release scheduled for December 2014
- Webinars to follow in January 2015
- Demos and trials will be available

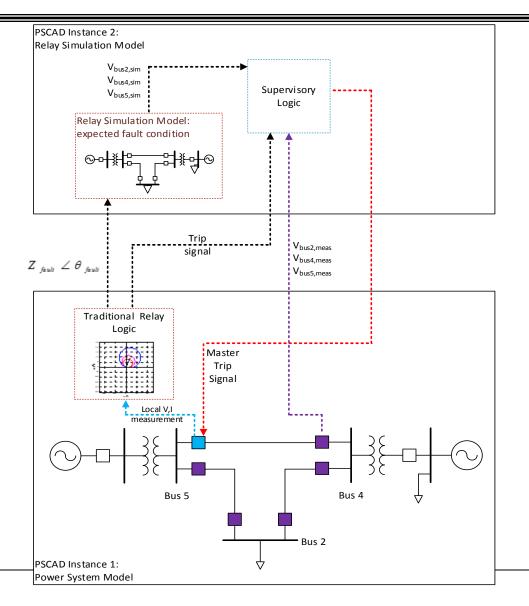
#### Joe Hood, PE

PSS®E /PSS®MUST Product Manager Siemens Power Technologies International Tel: +1.803.397.8539 joseph.hood@siemens.com www.siemens.com/power-technologies

## Software Tools and Methodologies for Future T&D Systems

University Perspective Surya Santoso The University of Texas at Austin

> Tuesday, Oct. 21, 2014 Houston, TX


## Panel Session on Advanced Tools and Methods for T&D Analysis: University Perspective

- Educating future generation of engineers:
  - B.S. and M.S. degree programs: well-rounded power engineers, knowledgeable in embedded systems, data and signal processing, communication and networks, and software/enterprise systems, ...
  - Ph.D. degree program: research-based with narrow focus on specific subjects in T&D analysis (e.g.: power quality, fault locating methods, network topology)
- Research:
  - Students: Abundance in qualified students applying to Ph.D. program, mature, highly motivated, the cream of the crop.
  - Emphasis: Original contribution on specific topics:
    - Advancing the state of the art
    - Transformative, and high impact.

## Panel Session on Advanced Tools and Methods for T&D Analysis

- University-industry collaboration:
  - University: a community of scholars with diverse expertise
  - Industry: real-world, economic reality
  - Research topics should more endogenous than exogenous to the real-world.
- Sample research topics
  - Methods for determining PV hosting capacity in distribution circuits
  - Methods and tools for grid impact and cost-benefit analyses of bulk DER integration.
  - Managing wind and PV variability
  - Future T&D protection systems: incorporating circuit model and faster than real-time simulation in microprocessor-based relays.

## Advanced T&D Protection and Relaying





Proudly Operated by Battelle Since 1965

## **R&D Perspective and New Approaches**

Jeff Dagle, PE Chief Electrical Engineer and Team Lead Electricity Infrastructure Resilience Pacific Northwest National Laboratory Richland, Washington +1 (509) 375-3629 jeff@pnnl.gov

The Grid of the Future Symposium - hosted by the CIGRÉ (The Council on Large Electric Systems) U.S. National Committee and the Electric Power Research Institute (EPRI)

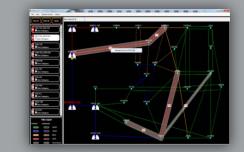
Panel Session: Software tools and methodologies for modeling, analysis, planning, asset management, and operations of future T&D systems

Houston, Texas October 21, 2014

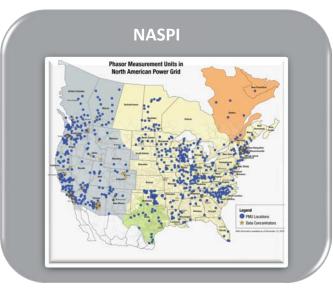
# Overview Transmission Reliability



#### **Technology Challenge**




Enhance power system reliability by leveraging new measurement systems to provide wide-area visualization, monitoring and control


## *Our approach: Improve power system performance and transmission reliability by extracting greater value from grid measurements and data. Key elements include:*

- U.S. DOE's lead for the North American Synchrophasor Initiative (NASPI), a joint effort with the North American Electric Reliability Council (NERC) and industry to build out phasor measurement units (PMUs) across North America, enabling increased situational awareness and control
- Planning models validation through measurement-based analysis
- Decision support tools for operators
  - Mode meter uses PMU data to improve detection of grid disturbances, enabling greater asset use and preventative measures; deployed in Western Interconnection Synchrophasor Project
- EIOC providing utilities, vendors and researchers access to real-time grid data for testing in realistic operations environment

#### **Graphical Contingency Analysis**



Real-time power flow visualization identifies/prioritizes issues, recommends corrective actions



## **Overview Grid Analytics**

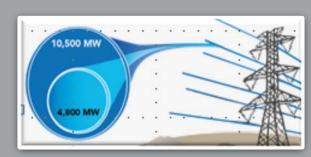


#### **Technology Challenge**



Translate vast amounts of real-time data into actionable knowledge to enable unparalleled grid planning and operations

## Our approach: leverage high-performance computing (HPC) and new algorithms to provide real-time tools for prediction and response.


- Accelerating speed of existing tools/functions
  - State estimation
  - *"N–2"* contingency analysis
- Developing entirely new tools/functions
  - Predictive state estimation (dynamic, predictive, fast, global)
  - "N-k" contingency analysis (decision support for complex issues)
  - Look-ahead dynamic simulation (faster than real-time simulations)
- Integrating currently independent functions
  - Operations and planning
  - Transmission and distribution
  - Power grid and data network

#### **Massive Contingency Analysis**



Converging on solutions 10,000x faster via HPC

#### Fast Dynamic Simulation



## **Our answer - Future Power Grid Initiative**



Proudly Operated by Battelle Since 1965

#### The Future Power Grid Initiative (FPGI)

- A multi year, multi million dollar, interdisciplinary initiative
- Funded through PNNL's Laboratory Directed Research and Development Program
- Led by Henry Huang, Ph.D., P.E.
- and Jeff Dagle, P.E.

#### Approach

- Combining PNNL's distinctive capabilities in power systems, data-intensive high-performance computing and visual analytics
  - Designing computational approaches to deliver a new



class of real-time tools for grid modeling and simulation

- Expanding power grid networking to support large scale and secure real-time data flow
- Advancing state-of-the-art visual analytics to convert very large volumes of multi-domain real-time data into actionable information

## **PNNL Future Power Grid Initiative**



#### **GridOPTICS<sup>™</sup>** – a suite of tools to enable three fusions:

- Bridging operation and planning to enable more seamless grid management and control
  - Remove overhead involved in communication between operation and planning
  - Improve response when facing emergency situations
- Integrating transmission and distribution in end-to-end grid modeling and simulation capable of handling 10<sup>9</sup> devices with uncertainty
  - Understand the emerging behaviors in the power grid due to smarter loads, mobile consumption, and intermittent generation
- Managing interdependency between power grid and data network (a test lab for power grid data networking is being set up)
  - Enable "all-hazard" analysis
  - Prepare grid operators and planners with the knowledge of data network impact on the power grid

