## Impact of Shunt Reactor Bank Switching on Transformer Neutral Geomagnetic Induced Current (GIC) Monitoring

Larry Anderson
Cigre GOTF – Houston, TX
October 20, 2014



# Background

- AEP started installing GIC monitors in 2012
- Currently 13 EHV transformer installations are monitored with more on the way
- Presently most installations are on 765 kV autotransformers (10 out of 13 installations)
- AEP utilizes switched shunt reactors at specific locations on it's EHV system to assist with voltage regulation
- Shortly after monitor installation large DC transients were observed at locations with switched shunt reactors on site or nearby

# Background Cont'd

- Initially reactor bank switching was overlooked as a source of the DC transient current
- Only after considering what type of transient events could produce such DC transients, were the switched shunt reactor banks investigated more closely
- After looking at reactor breaker closing times in relation to the DC neutral transients, it was observed that they coincided
- At this point it was decided to study these transients more closely to understand their true nature

## **Observed Transients**

#### Sullivan Transformer #1





- Data from AEP's SCADA system
- Low sampling rate
- Modified by data historian (swinging door compression)

## Observed Transients Cont'd

## Marysville Transformer #3



- Red curves are the currents recorded by GIC monitors
- Blue curves are reactor breaker status "1" indicates open, "0" indicates closed

## Reactor Bank Switching Transients

## Easily understood by analyzing the switching response of a simple RL circuit



Where 
$$e = E_m \sin(\omega t + \alpha)$$

Solving for i:

$$i = Ke^{-\frac{R}{L}(t-t_s)} + \frac{E_m}{Z}\sin(\omega t + \alpha - \varphi)$$
 (1)

Where 
$$Z = \sqrt{R^2 + \omega^2 L^2}$$
  
 $\varphi = \tan^{-1} \left(\frac{\omega L}{R}\right)$ 

 $\alpha = voltage\ phase\ angle$ 

K is a constant such that the current at  $t_s$ + equals the current at  $t_s$ -:  $K = -\frac{E_m}{Z}\sin(\omega t_s + \alpha - \varphi)$ 

#### Reactor Bank Switching Transients Cont'd



- Current calculated with equation (1) on previous slide
- Reactor switching response is similar to system fault response
- DC offset keeps the current just after switching the same as the current just prior to switching
- AC current rides on top of DC offset

#### Single Line Diagram of System Under Study



## **PSCAD Model and Simulations**



- The system was modeled in detail at least one bus away from the Sullivan 765 kV and Breed 345 kV buses
- The breaker used to switch the reactor was modeled with a pole closing span of 4.16 ms
- All transmission lines utilized full frequency dependent models
- Impact of breaker, pointon-wave closing time was investigated
- Impact of reactor resistance (X/R ratio) was investigated

### Simulation Results



- Peak DC neutral current is a function of the point-on-wave closing instant of the reactor breaker
- Peak DC neutral current in the simulations ranged from approximately 200 A into the transformers to approximately 200 A out of the transformers (approx. 400 A range)
- This variation was solely due to the point-on-wave closing instant of the reactor breaker

## Simulation Results Cont'd



- DC neutral current exhibits exponential decay typical of inductive circuits
- Time constant of decay is the ratio of reactor plus system inductance over reactor plus system resistance
- Time constants for the Sullivan system were typically in the range of seconds (approximately 1 - 10 seconds)

### Conclusion

- Switching of inductive devices inherently produces electrical transients
  - Seen in both the voltage and current
  - Result in a decaying DC component in the current
- DC current:
  - Is a function of the point on the voltage wave that each circuit breaker pole closes
  - Will typically be different in each phase due 120° electrical separation
  - Add in neutral connections of wye-grounded transformers
  - Appear as a DC current transient to monitoring devices
- Effects of switched shunt reactor banks must be considered when implementing GIC monitoring on nearby transformers

# **Questions?**