Understanding the Value of Uninterrupted Service

Paul Centolella, Vice President
Analysis Group

Mark McGranaghan, Vice President – Power Delivery and Utilization
Electric Power Research Institute

CIGRE Grid of the Future 2013
Technological Solutions to Regulatory Challenges
October 21, 2013
Renewed Focus on Reliability

• Superstorm Sandy Changed the Perception of Weather Risks
 • Sandy costs: $27 - $52 billion
 • Cost of weather related power outages: $20 billion - $55 billion/yr.
 • Over last 20 years >178 million customers lost power in major weather related outages
 • Number of major weather related outage more than doubled in 20 years
 • National Climate Assessment: increased potential for extreme weather, peak electric demands, coastal flooding, & cooling water shortages
Renewed Focus on Reliability

- Increasing cost of service interruptions
 - Technological Change & Smart Manufacturing: greater reliance on information, communications, & digital control technologies
 - Systemic Risks in Major Outage: Interdependence of critical infrastructure

- Growing Risk of Cyber & Physical Security Events
 - Cyber Security: “The cyber threat to critical infrastructure continues to grow and represents one of the most serious national security challenges we must confront.” Executive Order (Feb. 2013)
 - Physical Security: April 16, 2013 Attack on PG&E Metcalf Substation
 - National Academy of Sciences: Economic costs of terrorist attack on U.S. power delivery system could be as high as hundreds of billions of dollars

- Impacts on Utility Business Model
 - Customers invest in dispersed generation if grid perceived to be unreliable
How Reliability is Addressed in Regulation

- Quality Regulation - Reporting or targets: 23 States, Penalties: 11 States, Adjust rates for performance: 5 States
- Storms lead to regulatory reviews in affected states: MD, NJ, NY, CT, MA, IL
 - Standards often did not address storm restoration, but evolve
- Value of uninterrupted service is seldom quantified
 - Economic justification for reliability investments typically lacking
- Regulator balances reliability & cost based on limited information
 - Least cost focus can lead to externalizing costs to consumers
 - Equivalent reliability leads to focus on worst circuits rather than greatest value

Regulatory Reliability Standards 2005

Average Minutes of Service Interruption Per Customer

- Poland
- United States
- Portugal
- Czech Republic
- Great Britian
- France
- Italy
- Netherlands
- Germany

All Events vs Excluding Major Events
Value of Uninterrupted Service

• Value of uninterrupted service varies between customer classes

 • U.S. Department of Energy Meta-analysis results:

 | | Cost per Unserved kWh | Cost per Event |
 |----------------------|-----------------------|----------------|
 | | 30 Minute Outage | 8 Hour Outage |
 | Residential | $3.50 | $0.90 |
 | Small C&I | $396.30 | $296.10 |
 | Medium & Large C&I | $22.60 | $10.60 |

 | | 30 Minute Outage | 8 Hour Outage |
 | Residential | $2.70 | $10.60 |
 | Small C&I | $435.00 | $5,195.00 |
 | Medium & Large C&I | $9,217.00 | $69,284.00 |

• Value of uninterrupted service varies within customer classes

 • U.S. Department of Energy Meta-analysis results:

 Average Electric Medium & Large Customer Interruption Cost per Event (2008$)

 | | Momentary | 1 Hour | 8 Hour |
 |----------------------|-----------|--------|--------|
 | Agriculture | $4,382 | $8,049 | $41,250|
 | Trade & Retail | $7,625 | $13,025| $58,694|
 | Mining | $9,874 | $16,366| $70,281|
 | Services | $8,283 | $14,793| $71,997|
 | Manufacturing | $22,106 | $37,238| $164,033|
 | Construction | $27,048 | $46,733| $214,644|
Limitations of DOE Outage Cost Analysis

- U.S. Department of Energy through Lawrence Berkeley National Lab has developed tools for estimating outage costs to customers
 - Interruption Cost Estimate Calculator: http://www.icecalculator.com/
 - Most accessible data on U.S. customer outage costs
 - Based on utility surveys using standard 1995 EPRI methodology
 - Underlying data needs to be updated and expanded
 - Based on surveys conducted for 9 utilities from 1989 to 2005
 - Only 2 utility datasets include surveys conducted after the year 2000
 - None of the data from Northeastern, Mid-Atlantic, or Mountain West states
 - None of the surveys asked about outages lasting longer than 8 hours
Methods for Estimating Value of Uninterrupted Service

- **Survey-based methods**: Most widely used approach
 - Can obtain outage costs for variety of conditions by asking about outages of varying durations, with / without advance notice, in different seasons, or at different times of day
 - Properly structured surveys can provide robust content validity: customer is in the best position to assess the impacts based upon their experience & requirements
 - Stratified sampling can ensure desired precision and representation of customer populations of interest

- **Commercial and industrial surveys** use “Direct Worth: approach:
 - Customers asked about the value of lost production, other outage related costs, & outage related savings, taking into account their ability to make up for any lost production

- **Residential surveys** use “Willingness to Pay” and/or “Willingness to Accept” approach:
 - Most residential impacts are not directly observable economic costs but quality of life impacts
 - Survey “willingness to pay” to avoid specific outages and / or the amount of compensation required to agree to specific interruption, “willingness to accept”
Alternative Methods for Estimating Outage Costs

• Proxy “revealed preference” methods: Uses an observable behavior to estimate value of outage avoidance, e.g. if customer purchases back-up generator, the customer’s expected cost of avoided outages may be equal to or exceed the cost of the backup power supply
 • Proxy methods are available in limited circumstances where behavior is observed & suggest only an upper or lower bound on outage costs.

• Consumer surplus: Estimates based on observations of longer term price elasticity.
 • Drawback of relying on assumed correspondence between long-term elasticity for known price changes and short-term outage costs has severely restricted its use

• Reliability demand models: In developing countries may include the quality of service purchased in a demand models
 • Given uniformly high levels of U.S. reliability, approach is not been applied here
Extending Survey Methods

- Customer segmentation: Modern statistical methods applied to additional customer data may identify segments that place the greatest value on reliability.
 - Traditional customer classifications may not be the only or most important drivers of differences in the value of uninterrupted service
 - Linking to other demographic and / or psychographic information may identify customer characteristics most associated with valuing reliability
 - By providing targeted service offerings, utility may be able to provide greater reliability, at less cost, & with reduced environmental impacts compared to customer dispersed generation

- Service Quality Index: For key customers service quality & customer satisfaction not related only to traditional reliability indicators (SAIFI, SAIDI, CAIDI), may be impacted by:
 - Power quality characteristics affecting customer equipment
 - Disturbances including momentary outages and voltage sags
 - Weighting different effects based on their potential economic impacts for the customer can help characterize the quality of service provided
Service Quality Index

- Service Quality Index provides:
 - Exploring options for key customers
 - Including steady state power quality, momentary outage & voltage sag impacts
 - Exploring probability of such impacts
 - Incorporating representative or customer specific economic value

Procedure for Applying Service Quality Index
Reliability from a Customer Perspective

• Utilities face significant investment requirements in a challenging environment – setting reasonable priorities requires a consistent economic framework

• Understanding the value of uninterrupted service can enable utilities to:
 • Support and prioritize investments to replace aging infrastructure, in advanced distribution automation, in outage management systems and advanced metering infrastructure, and in grid hardening and climate adaptation
 • Help utilities assess business risks: Customers will tend to pursue dispersed generation based on value they place on uninterrupted service
 • Enable utilities to offer value added services to customers willing to pay for enhanced levels of reliability

• New studies needed to understand reliability from a customer perspective
Paul Centolella
Vice President
111 Huntington Ave. 10th Floor
Boston, MA 02199
(617) 425-8182
pcentolella@analysisgroup.com

Mark McGranaghan
Vice President, Power Delivery and Utilization
942 Corridor Park Boulevard
Knoxville, TN 37932
(865) 218-8029
mmcgranaghan@epri.com