CIGRE US National Committee 2013 Grid of the Future Symposium

October 20-22, 2013 Boston, USA

Age-dependent & multi-load reliability analysis in transmission systems

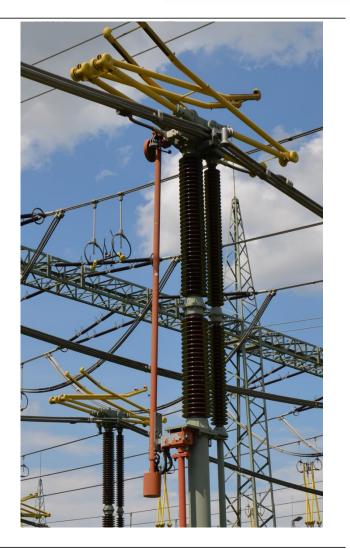
Marco Fleckenstein, Prof. Dr. -Ing. Claus Neumann, Prof. Dr. -Ing. Gerd Balzer

Technical University of Darmstadt, Institute of Electrical Power Systems Landgraf-Georg-Str. 4, 64283 Darmstadt, Germany phone: +49 6151 16-75004 e-mail: marco.fleckenstein@eev.tu-darmstadt.de

Content

Motivation

Transmission system model


Vertical load situations

Reliability values

Results

Conclusions

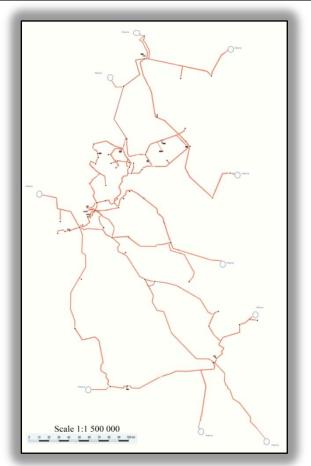
Motivation

Technical aspects

- Higher network utilization
- Availability of the transmission system

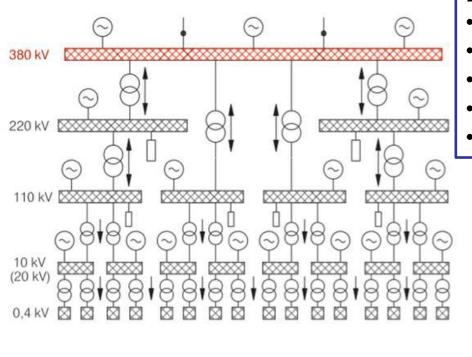
Financial interests

- Liberalization of the energy market
- Achieve profit
- Limited billable fees


Reduce network risk by constant maintenance costs with risk based maintenance

- Exact determination of individual asset risk
 - Multi-load reliability analysis
 - Age-dependent outage values

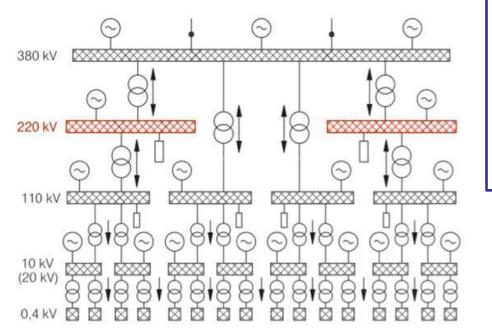
Structure of the transmission system model Overview


- Large part of the transmission system from a TSO in Germany
- The model includes this voltage levels:
 - 380 kV transmission system
 - 220 kV transmission system
 - 110 kV network groups

380 kV overhead line network

Structure of the transmission system model 380 kV transmission system

More detailed modeling is difficult.

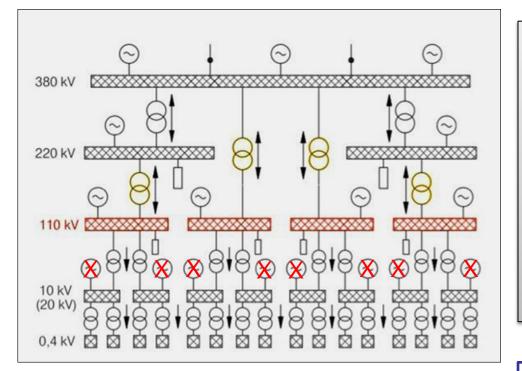

Detail level:

- Substations & busbar configurations
- Switch positions
- Power plant units & transformers
- Length of overhead lines
- Connection points to other TSOs

Element	Number of Elements	
Bus bar	145	
Center break disconnector	263	
Circuit breaker	337	
Generator	30	
Overhead line	4453 km	
Pantograph disconnector	952	
Power	380/110kV: 78	
transformer	380/220kV: 25	

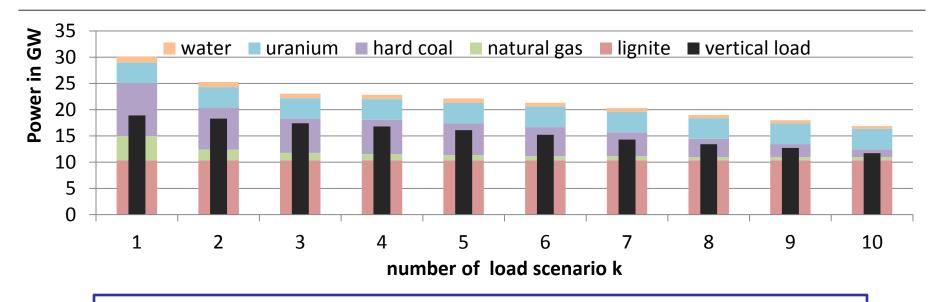
Structure of the transmission system model 220kV transmission system

Detail Level:


- Length of overhead lines
- Power plant units
- No substation layout
- No reliability data for assets

Only modeled structurally.

Structure of the transmission system model 110kV sub-transmission network groups


Detail Level:

- Coupling transformers from 380 kV & 220 kV
- Load aggregated as loading of coupling transformers
- Infeed of power plant units disregarded

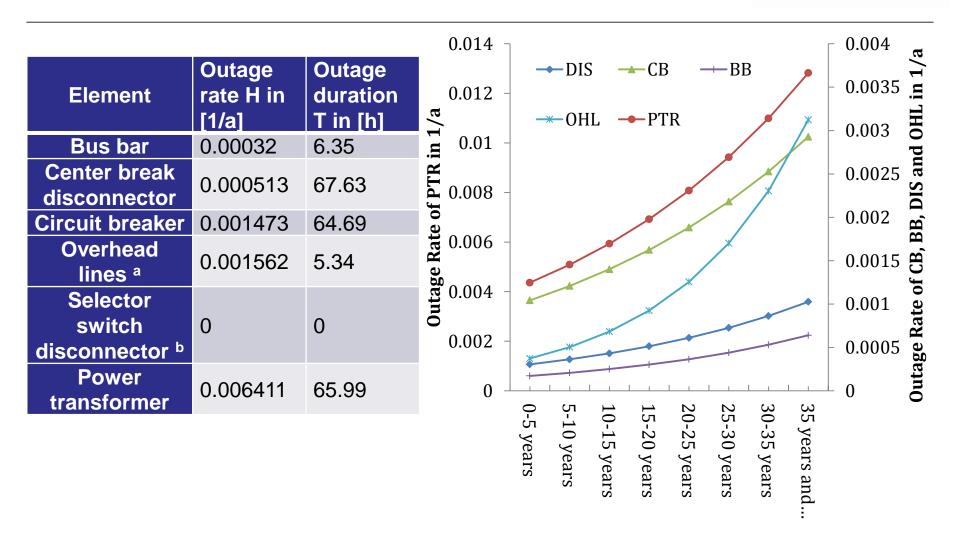
34 Utility network groups8 industrial network groups

Load & power plant scenarios

- All common network states within one year adopted.
- Surplus power is transferred into neighboring transmission systems.
- Power plant power gradients are considered in the model

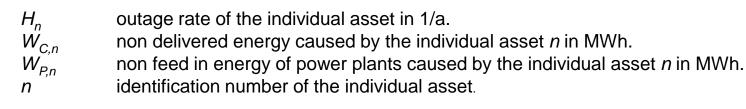
Reliability & Availability analysis for all ten load scenarios

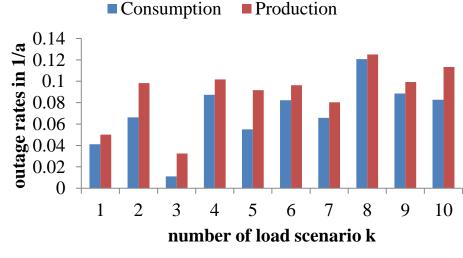
 $T_{ND}(n,k)$ non-delivered outage duration in h $P_{ND}(n,k)$ non-delivered power in MW $T_{NS}(n,k)$ non-supplied outage duration in h $P_{NS}(n,k)$ non-supplied power in MW


Values for power plants

Type of power plant	Load gradients in % per minute	Share of auxiliary power in %	Number of power plant units	Installed gross power in MW
Hard coal	2 -4	7 – 10	18	10038
Lignite	1.5 – 2.5	10 - 16	27	8599
Gas turbine	25	2 - 4	1	112
Combined cycle	5	4 - 6	9	6286
Nuclear	10	4 - 5	3	3925
Pump storage	100	8.5	1	1096

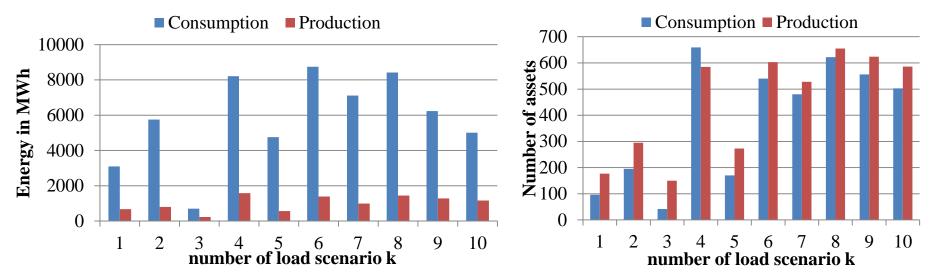
Reliability values





Results: outage rates

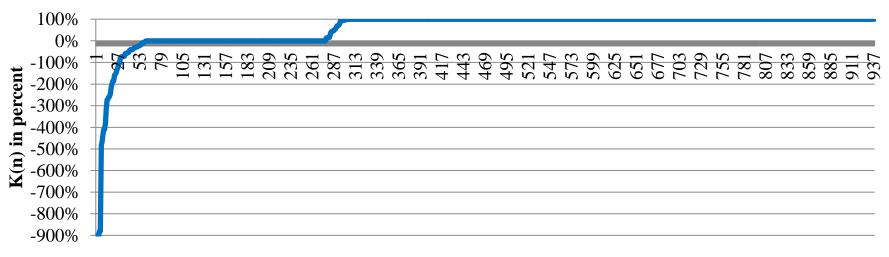
$$H_{C} = \sum_{n=1}^{m} H_{n} \cdot \Theta(W_{C,n}) \qquad (1) \qquad H_{P} = \sum_{n=1}^{m} H_{n} \cdot \Theta(W_{P,n}) \qquad (2)$$



	10 load s	cenarios	peak load scenario		
	H _{C,ACC} in 1/a	H _{P,ACC} in 1/a	<i>H_C</i> in 1/a	H_P in 1/a	
٦	0.7006	0.8887	0.4804	0.5739	

Results outage rates

Non-delivered & non-supplied energy of the Number of assets responsible for outages ten load scenarios

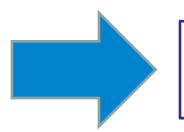


Results outage rates

$$K(n) = \frac{W_{C,TL,n} - W_{C,Peak,n}}{W_{C,TL,n}} \cdot 100\%$$

- $W_{C,Peak,n}$ non delivered energy caused by the individual asset *n* during the Peak load with averaged outage rate in MWh.
- $W_{C,TL,n}$ averaged non delivered energy caused by the individual asset *n* with age-dependent outage rate within the ten load scenarios in MWh.

asset n of the 380 kV level


Conclusions & further work

Source: abb.com

- Different load & power plant scenarios are important for asset risk determination
- Age-dependent outage rates are necessary for exact analysis
- More reliability and availability data must integrated in the database

Risk-based maintenance is a good possibility to improve the reliability and availability of the transmission system and reduce operative costs.

Thank you for your attention.

