

Advanced System Control, Modeling & Analytics

Session Advanced System Control,

Modeling & Analytics

BOSTON 2013

Advanced Utility Analytics with Object-Oriented Database Technology

Paul Myrda, John Simmins, Bert Taube

USA

- Uniqueness of the Big Utility Data context and critical Use Cases requiring Advanced Data Management and Analytics Technologies,
- NoSQL Data Management & Analytics Solution Development Framework for Utilities/ISOs,
- Examples of effective Performance of NoSQL Data Management & Analytics Solutions for Utilities/ISOs:
 - Example 1: NoSQL Solution to create SA in Transmission
 - Example 2: AMI/Asset End Device Event Data Management
 - Example 3: Total Cost of Ownership & Performance (NoSQL/MySQL)

Advanced Utility Analytics with Object-Oriented Database Technology

Uniqueness of Big Utility Data Context and Critical Use Cases describing the Need for Advanced Utility Data Management and Analytics

BOSTON 2013

Big Utility Data Management and Analytics – Data Diversity Challenge BOSTON 2013

Big Energy Data Features

Data Volume (e.g. TBytes per Day)

Data Velocity (e.g. 300,000 Data Objects/sec)

Data Variety (e.g. Large Variety of Data Object Types/Classes)

Data Validity (e.g. Large Variety in Data Object Shelf Life)

Data Veracity (e.g. Large Variety of Data Objects with different Data Quality) **Energy Data Types**

Telemetric Data (e.g. in SCADA Systems; normally in Historian)

Oscillographic Data (e.g. in Power Quality Monitor; normally in Historian)

Usage Data (e.g. in Meter Data Management System; normally in RDBMS)

Asynchronous Event Messages (e.g. in Distribution Managem. System; normally in RDBMS)

Meta Data (e.g. in Geospatial Info System; normally in RDBMS) Energy Data Sample Rates

μs – Range (e.g. HF Switching Devices)

> ms – Range (e.g. PMU Devices)

sec – Range (e.g. DER Output Variations)

min – Range (e.g. Service Restoration)

hour – Range (e.g. Demand Response)

Day – Range (e.g. Day-ahead Scheduling)

> Year – Range (e.g. Life of IT Asset)

Decade – Range (e.g. Life of OT Asset)

Advanced Utility Analytics with Object-Oriented Database Technology

Integrated NoSQL Data Management & Analytics Solution Development Framework for Utilities/ISOs

BOSTON 2013

Advanced Utility Analytics with Object-Oriented Database Technology BOSTON 2013				
	RDBMS (since early 1970s) DBMS in which information is represented in form of tables with additional relations between the tables.	Object – Relational Impedance Mismatch between OOP and RDBMS	<u>OOP</u> (since late 1950s/MIT) Programming paradigm representing concepts as objects with data fields describing the object (attributes) and associated procedures called methods (e.g. C++/Java are OOP languages). Collection of interacting objects vs. task list	OODBMS (since early 1980s) DBMS in which information is represented in form of objects.
	OOP and RDBMS are extremely common in software today. OODBMS is less adopted even though much better performance and cost – to – performance ratio.		In OOP, each object is capable of receiving messages, processing data, and sending messages to other objects. Each object can be viewed as an independent "machine" with a distinct role or responsibility.	

. .

N

Utility Data Management & Analytics – NoSQL Solution Development Framework BOSTON 2013

Big Utility Data Management and Analytics – Data Integration

Utilities need Object Database Solutions to accommodate Variety of Data Models for effective Utility Data Analytics!

cigré

Utility Data Management & Analytics – Network Data Analytics & Visualization BOSTON 2013

- Handles complexity of networked data models
- Benchmarks significantly faster than competition

BOSTON 2013

- Designed to Scale with a modern architecture
- Provides high Quality-of-Service (QoS) up time (99.9999 availability)
- Provides extreme operational efficiencies
- Enables new networked data analysis

Advanced Utility Analytics with Object-Oriented Database Technology

Examples of Effective Performance of NoSQL Data Management & Analytics Solutions for Utilities/ISOs

BOSTON 2013

Advanced Utility Analytics with Object-Oriented Database Technology

PMU Data Analytics:

BOSTON 2013

NoSQL Solution to create Situational Awareness in Power Transmission

Synchrophasor Data Analytics: NoSQL Solution for SA in Transmission

BOSTON 2013

Simulated Wide-Area Phase Angle Divergence between 2 Locations of Transmission Grid, i.e. Seattle WA and Southern CA

Synchrophasor Data Analytics: NoSQL Solution Architecture

BOSTON 2013

cigré

Advanced Utility Data Management & Analytics with NoSQL Technology

AMI/Asset Event Data Management:

BOSTON 2013

End Device Event Data Ingestion, Analysis and System Correction

Performance Benchmarking

AMI/Asset Event Data Management: NoSQL-MySQL Benchmarking

BOSTON 2013

CIM EndDeviceEvent Profile Object Model

Reference AMI/Asset Event Data Management NoSQL-MySQL Benchmarking

Seconds.

BOSTON 2013

Seconds.

AMI/Asset Event Data Management: NoSQL-MySQL Benchmarking

BOSTON 2013

End Device Event Object Ingestion, Data Analysis, System Correction Simulation Versant JPA with NoSQL

List of Critical/Catastrophic End Device Events during Simulation

Transformer Asset # 37_12398 overloaded (Critical Event)

End Device Event Simulation has been completed in 34 Seconds processing a Total of 413,000 End Device Event Profile Objects and allowing only 1 critical Failure Event.

AMI/Asset Event Data Management: NoSQL-MySQL Benchmarking

BOSTON 2013

End Device Event Object Ingestion, Data Analysis, System Correction Simulation Hibernate JPA with MySQL

List of Critical/Catastrophic End Device Events during Simulation

- 1. Transformer Asset overloaded (1 critical Event),
- 2. Transformer Asset failed (7 catastrophic Events),
- 3. Meter Power out (15 critical Events).

End Device Event Simulation has been completed in 278 Seconds processing a Total of 413,000 End Device Event Objects and allowing 16 critical and 7 catastrophic Failure Events.

completed in 34 Seconds processing a Total of 413,000 End Device Event Objects and allowing only 1 critical Failure Event. End Device Event Simulation has been completed in 278 Seconds processing a Total of 413,000 End Device Event Objects and allowing 16 critical and 7 catastrophic Failure Events.

Total Cost of Ownership and Performance:

NoSQL vs. MySQL

Total Cost of Ownership & Performance:
NoSQL vs. MySQLBOSTON 2013

Database Performance Benchmarking: Cost

Assumptions: (i) 1 DB Server requires 2 App Servers (Linked NoSQL) and (ii) 1 DB Server requires 5 App Servers (Hibernate Postgres)

Total Cost of Ownership & Performance:
NoSQL vs. MySQLBOSTON 2013

Database Performance Benchmarking: Time

Total Cost of Ownership & Performance:
NoSQL vs. MySQLBOSTON 2013

Database Benchmarking: Required Number of DB Servers

Assumption: 20 million Objects per min

Building Business Value through Increased Situational Awareness

THANK YOU!

