

Identifying Sources of Oscillations Using Wide Area Measurements

Douglas Wilson, Natheer Al-Ashwal

2014 Grid of the Future Symposium

October 2014

Introduction

Need for Source Location in Managing Oscillations

- Oscillation Identification long established
 - Real-time control-room measures on known modes since 1998 (GB inter-area 0.5Hz)
 - Monitoring reveals previously unseen behaviour and risks
- Oscillation behaviour can be complex
 - Many plants, loads, controllers participating over wide area
 - Issues not replicated in models e.g. interaction/resonance, plant malfunction, forcing
- **Decisions on actions** (real-time or planning) require information to identify sources
 - Applicable to interconnection (is source in my area?)
 - "Largest amplitude" an unreliable indicator
 - Assume incomplete observability (especially currents)

New method yields Source Identification using Sparse Voltage Bus Measurements

ALS'

Presentation title - 23/10/2014 - P 2

Oscillation Phase Relations for a Single Machine

- P and δ lag ω by about 90°, determined by damping.
 E.g. damping ratio 20%, angle lags 90°+12° and power lag speed by 90°-12°
- Power (P) in phase with speed (ω) produces positive damping.
- Power out of phase with speed produces negative damping.

Presentation title - 23/10/2014 - P 3

2-Machine Example

Equal Damping Contributions

More Damping Contribution from Generator 1

More Damping Contribution from Generator 1

Lagging generator contributes more damping than leading generator Leading generator is "source"

Presentation title - 23/10/2014 - P 4

Identifying Sources of Oscillations

Example

- Leading phase indicates less damping contribution.
- The "source" is the location with the lowest damping contribution (possibly negative).
- To find the source of an oscillation:
 - 1. Divide into opposing groups. The group leading by less than 180° is the group containing the source.
 - 2. Find the most leading location within the leading group.

Gen 2 is the Source

Presentation title - 23/10/2014 – P 5

Real System Case from ISO-NE

Undamped 0.9 Hz oscillations after disturbance, 10 minutes.

- Amplitude and Phase differences in time domain signals.
- Group of PMUs 19,30,31
 leads PMU 34 by less than 180° → source group is
 PMUs 19, 30, 31
- Within source group, phase PMU31→PMU30→PMU19.
 PMU31 is source

Presentation title - 23/10/2014 - P 6

Mode Shape from all 39 measured locations.

Presentation title - 23/10/2014 - P 7

Group Phase difference

Most Leading Locations Within Group 1

- Within Group 1, PMU31 is leading
 → small or negative damping
 near PMU31.
- If PMU31 was not available, PMU30 would be indicated, which is near PMU31, but much lower mode amplitude. Correct conclusion would be reached without PMU31.

ALST

Correct Conclusion to Nearest PMU, even without Large Amplitude

Presentation title - 23/10/2014 - P 9

Application to Large Interconnection

Presentation title - 23/10/2014 - P 10

Application to Large Interconnections

Concern

- Are there significant oscillations in interconnection?
- Is my system involved?
- Can the oscillation be controlled within my area?
- What measures can I take?
 - Operationally
 - Planning & control design

Solution

- Alarm on unusually large or poorly damped oscillations
- Check high level geographic interconnection source location view
- Compare contributions inside & outside system – action if source(s) within system
- Identify specific source plant(s) in detailed measurements
 - Change V/VAR dispatch, P dispatch if necessary. Inform plant.
 - Improve PSS, SVC-POD control design at key plant(s). Confirm wide-area response after commissioning

ALS

Approach can be applied to a large interconnection by sharing a high-level sparse set of voltage phasor measurements

Presentation title - 23/10/2014 - P 11

Application to PSS tuning

0.33

6.3%

-154.3

PSS #3 ON

Conclusions

Novel measurement-based oscillation source location

- Applied to voltage phasors
- Uses oscillation phase relationships for contributions
- Not dependent on observing largest amplitude
- Applied to recorded example from ISO-NE
 - Instability at 0.9Hz observed throughout ISONE
 - Leading phase indicated source of oscillation (large amplitude only in 1 measurement)
 - Phase method gives correct outcome, even without the large-amplitude measurement
- Applicable from small systems to large interconnections
 - High-level wide-area view
 - Detailed control area view
- Applicable in Real-Time or Analysis timeframe

Presentation title - 23/10/2014 - P 13

