

CIGRE US National Committee 2014 Grid of the Future Symposium

Initial Field Trials of Distributed Series Reactors and Implications for Future Applications

I GRANT Tennessee Valley Authority USA J SHULTZ Tennessee Valley Authority USA S OMRAN Virginia Tech USA J COUILLARD Smart Wire Grid Inc. USA F KREIKEBAUM

Smart Wire Grid Inc. USA

R BROADWATER Electrical Distribution Design (EDD) USA

Presented by:

BRUCE ROGERS, Director, Technology Innovation, TVA CHIFONG THOMAS, Director, Transmission Planning and Strategy, SWG Inc.

Managing Overload and Congestion

Transmission Lines are becoming more overloaded and congested as loads and generation move or increase

- Typical solutions
 - Switching (but this places increased burden on equipment)
 - Reconductoring
 - New Line Construction
- Other Lines are Underutilized
- Current Power Flow Methods
 - Expensive and/or need frequent operations
- Older Technologies such as air-core reactors or FACTS are:
 - Centralized
 - All or Nothing
 - Take up Substation Space

Background

- Rapidly deployable distributed power flow control for existing transmission lines
- Diverts current from the overloaded lines to underutilized ones
- Concept was first demonstrated in 2002-03 and has since been demonstrated in pilot installations on HV transmission lines.

Distributed Series Reactor

- Injects pre-tuned inductance value to increase line impedance
- Self contained device, powered by induction from a transmission line conductor
- Two methods of control
- With secondary winding shorted injection is negligible

Power Line

Communication and Control

- Operate autonomously based on preset values (line current)
- Controlled remotely via Power Line Carrier, Cell phone
- DSR information display available in control center

Example Application in Meshed Grid

39 BUS SYSTEM

- Baseline MW: 1904 MW
- Increase in transfer capability of 638 MW (33.5%)
- Increase in line availability from 59% to 93%

Impact of DSRs on Line Utilization

Prototype DSR Installation at TVA

Installation Details

- Clamshell construction
- Two halves secured together with a torque wrench
- Approximately 10 min to install each DSR
- Devices run self diagnostics and can be remotely tested

- 21 mile segment of 161 kV line
- 99 DSRs installed on 17 spans
- 33 DSRs per phase

Pilot Test Results

- Total Impedance Increase (33 DSRs / Phase @ 47 µH / DSR): .226 % (control limited by number of available devices and a test line that was longer than optimal for the demonstration)
- Devices performed as expected over 4-step range (see below)
- Devices successfully adjusted phase imbalance
- Single point failure of communication system identified for necessary design upgrade
- DSRs presently considered unsuitable for bundled conductor use

Time :	1:22 PM		1:28 PM	
	Pre Condit	ions	Post Condition	ons
т	457.9	amp	462.0	amp
м	471.1	amp	464.7	amp
В	457.0	amp	463.1	amp
SCADA (Middle)	483.0	amp	469.0	amp

Information: 28 out of 33 DSRs ON Middle Phase

- Success of pilot opens path to more critical applications
- Simplest application is reduction of maximum contingency load for postponement of line uprate
- Ability to quickly relocate DSRs reduces cost to individual projects
- Extreme case for portion of HV grid to have dynamically assigned line loading for selected goals, e.g. minimize system losses
- Future designs may provide capacitive injection to reduce reactive impedance
- Future designs with high speed controls may be low cost alternative to FACTS

The IEEE 39 bus standard test system converted to a three phase system with 345kV lines

The 345kV Line Configuration

Structure Type: 3L11→Utility: Houston Lighting & Power Company

Reference: EPRI, Transmission Line Reference Book - 345kV and above

Line Impedance Models

Unbalanced:
$$Z_{line} = \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix}$$

Positive Sequence:
$$Z_{line} = \begin{bmatrix} Z^0 & 0 & 0 \\ 0 & Z^+ & 0 \\ 0 & 0 & Z^- \end{bmatrix}$$

Positive Sequence Z is derived from the Unbalanced Model Z using the symmetrical components transformation

DSR Design for Load Growth

■ Line5-6 ■ Line6-7 ■ Line13-14 ■ Total

Unbalanced vs. Positive Sequence Impedance Model

DSR Design for Single Contingency: Unbalanced Impedance Model

DSR Design vs. Line Reinforcement for Single Contingency and Load Growth: Economic Evaluation

- Determine the maximum MW supplied to load while handling all single contingencies
 - Case1: Three Lines Reinforced with No DSR
 - Case2: Three Lines Reinforced with DSR
- Economic assessment of both cases

Economic Evaluation Results

- Case1: With Three Lines Reinforced
 - 125% loading is reached
- Case2: With Three Lines Reinforced and DSRs Deployed
 - 140% loading is reached and selected as a desired DSR Design due to its technical merits
 - Fewer number of DSRs deployed.
 - Least % change in lines impedance.

Data for the Economic Study

• Max MW supplied at different % loading:

		Max MW	MW
Case	% Loading	supplied	increase
Base	100%	6309.4	
Case1	125%	7886.6	1577.2
Case2	140%	8833.1	946.5

• Total length of the reinforced lines = 95 miles.

Reinforced Line	Length (miles)	
Line2-3	37	
Line6-7	29	
Line15-16	29	

• Cost of 345 kV, single circuit = 1298 \$k /mile

Line Reinforcement Cost

- Cost of 95 miles of line = 95 x 1298 k\$ = 123.31 \$M
- Cost for 1577.2 MW of load increase = 123.31 \$M
- Cost per MW of load increase for reinforcing lines =

123.31 \$M/1577.2 MW = 78,182 \$/MW

- For the selected DSR design, a loading of 140% is achieved using 1575 DSR modules.
- DSR worth in terms of transmission line value:
 - Cost of 946.5 MW of load increase = 946.5 MW x 78,182.8 \$/MW = 74 \$M
 - Thus the equivalent value of 1 DSR = 74 \$M/1575 DSRs = 46,984 \$/DSR

Questions