Advanced LV Distribution Network Monitoring and Enabled Applications

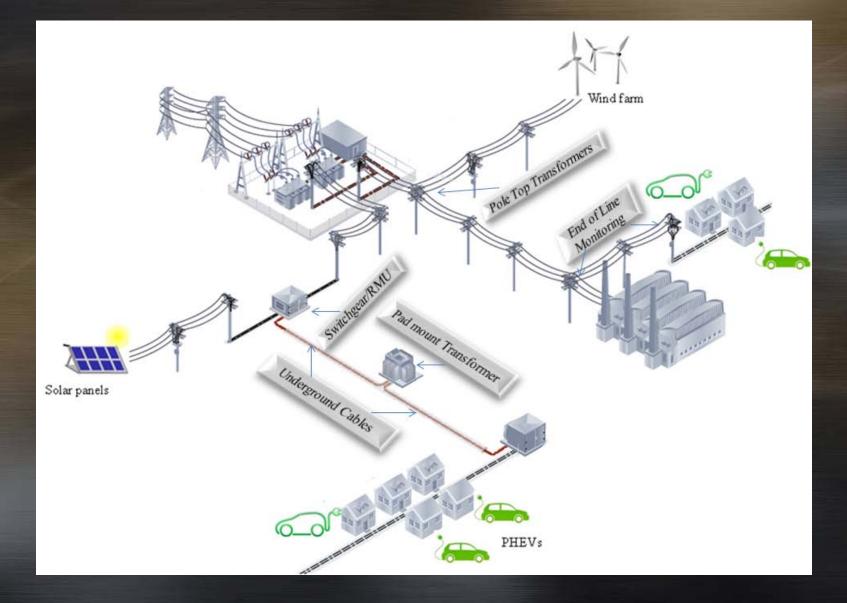
Palak Parikh, Lalit Lopez GE Digital Energy

Acknowledgment: Scottish and Southern Energy(SSE)

CIGRE USNC Grid of the Future Symposium 2014

Outline

Why LV network monitoring?
Challenges and Opportunities


LV Monitoring Node Architecture

Advance LV Distribution Network Applications

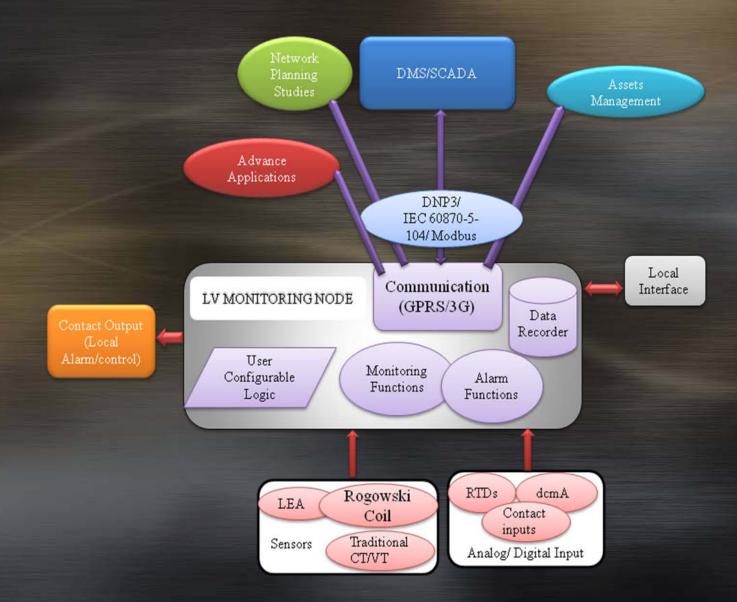
- Pad Mounted/Pole-Top Transformers and Switchgear
- Cable in Vaults
- End of Line Utility/Industrial
- Scottish and Southern Energy (SSE) NTTV Project
 - Utility Overview
 - Project Requirement & Lesson Learned

Summary

Why LV Network Monitoring

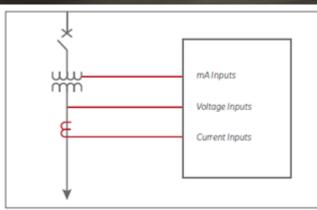
Upcoming Challenge on LV side

Impact of Distributed Energy Resources (DERs)


- Large scale interconnection of single-phase distributed generation (DG) with the utility distribution grid can cause current unbalances, resulting in voltage unbalances
- Distributed generation can complicate the regulation of voltage across the length of distribution feeders
- Plug-in hybrid electric vehicles (PHEVs) are the next big revolution in the electric transportation market. Distribution grids are not typically built to handle a large amount of increased loads

• Power Quality (THD) from battery charger/storage

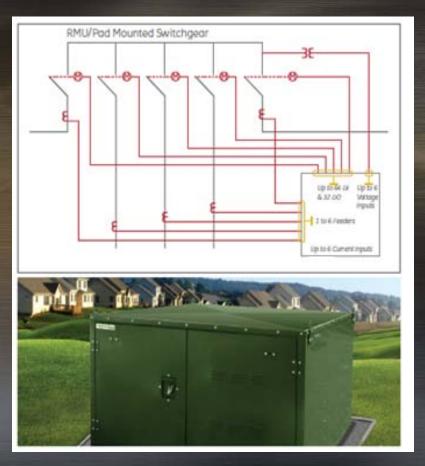
Concerns on Applying LV Monitoring System


- Outage during installation/retrofit
- Costs
 - Installation
 - Operation and maintenance
- Asset management
- Space constraint for CTs & VTs
- Communication infrastructure
- Integration with existing DMS system

LV Monitoring Node (LVMN)

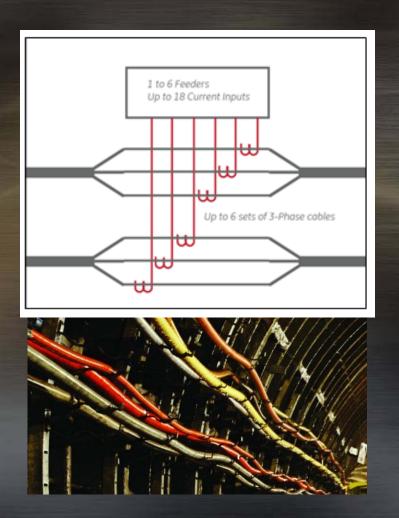
Applications: Pole Top/Pad Mounted Transformers

 Distribution Transformers – enhancing monitoring, life span, outage time



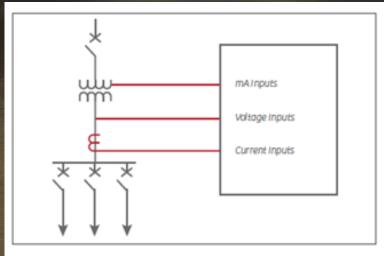
- Transformer load profile monitoring: Peak demand statistics recording; improved load flow/planning studies
- Transformer condition monitoring: oil and winding temperature monitoring through dcmA and RTD sensors
- Quick retrofit installation especially in tight spaces through Rogowski coil current sensors
- Energy monitoring and logging to help theft detection

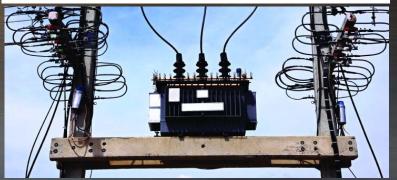
Applications: RMU/Pad Mounted Switchgear


• Enhancing RMUs (Ring Main Units) and pad mounted switchgear

- Overcurrent detection per phase (50, 51) for each feeder to identify faulted circuits and loads approaching overload levels
- Expandable digital inputs and outputs enable remote switching of main incomers or outgoing switches
- Flexible logic engine to enable user configurable controls
- SCADA/DMS based monitoring and controls over cellular network

Applications: Cable in Vaults


• Compact, cost-effective fault detector for underground cable networks



- Deployment of the LV monitoring device at strategic locations along cable paths enables faster fault detection/ faulty section location
- Early warning on overload and alarms for fault detection per phase (50, 51) for each feeder to reduce feeder downtime
- Rogowski coil option to enable retrofit installation in spacelimited locations and to reduce the need for outages

Applications: End of Line – Utility/Industrial

• End of Line Monitoring plays an important role

- Enhanced voltage monitoring and control by giving inputs to Volt/Var control schemes.
- End of line voltage and current measurements to help in short term and long term operational planning
- Energy monitoring and logging to help non-technical loss applications
- Power Quality monitoring
- Overcurrent detection with alarm/trip to provide early warning signals of potential failures

SSE's NTVV Project & its Requirements

 SSE is a leading electricity and gas company, operating mainly in the UK and Ireland serving around 3.7 million customers

 Demonstrating the benefits of monitoring LV network with embedded photo-voltaic (PV) panels and electric vehicle (EV) charging points (SSET1002)

Installation requirements,

- Space restriction to fit within all substation enclosure types & outdoors
- Weight limitations
 - Can be comfortably installed by one person
- Installation mounting options for
 Wall mounted, Pole mounted & Floor/pad mounted

Background of SSE and NTVV Project

 Monitor & Record parameters from the bus bar and up to 6 LV feeders

Utilize SSE existing 3G/GPRS communication infrastructure

 No customer loss of supply during installation and commissioning

 In addition, the support of a mechanism to remotely set limit thresholds for alarm generation

Installations at Distribution Substations

Courtesy : Scottish and Southern Energy

Integration with DMS

- Communication to and from the monitoring node over existing SSE APN, using the industry standard DNP3 protocol.
- DMS TOOL SNAP SHOT

🔚 HV Diagram Diagram Yiew Bookmarks Belp y 🛄 😳 📿 🐾 😒 🦗 699.310 - 🔹 y y 🔤 🔀 💱 📰 y																	
Diagram Yo	ew Bookma	rks Efficie je	- 🔄 🔶 🤇	o ~ «				• 17		M 🗘	🚚 👘						
03	23.1		105	urrent Norma	I Ngo C	bano-re-mino	*	lata 🚁 SSE D	v Pilot W	forte a							
							1423101_D1 CHP3 RTU 54171 Code y OH SCAR			00 <u>0</u> a	Control Power Lost Control Power Applied Date or Time Set Reset Lockout Reset Closed Factory Reload Clock Not Set IRIC-8 Failure						
		Busbar															_
		1.2	13	Alarm Value						L1	12	1.3					
High Volta				110 Percent				Volts Max		245	245	245					
Low Volta				94 Percent				Volts		242	242	243					
	8							Volta			244	244					
No Volta				0 Percent				Amps									
oh High Amps				870 A				Amps Mean	ps Min 171 A an rms 204 A								
High Amps				690 A				Energy			_						
					<u> </u>					850	2103		_				
Mode 1		Energy ve 0 0										0	KWOH				
Mode 2	0	Reactive Energy -ve 12									0	0	RVARH				
Power	47.1	44.8	54.4	KW .				Harmonics	mics v16t 2.6		2.5	2.5					
teactive Power	4.0	6.5 3.7		KVAR				Device Sample Rat			tate 1 Perce	Ine					
Harmonica v%	2.7	25 25															
Volta	243	244	244														
		Feeder 1	L3	Alarm Value	ы	Feeder 2	LS	Alarm Value			Feeder 3	13	Alarm Value	L1	Feeder 4	ب	Alarm Value
High Amps				160 A				160 A					160 A				160 A
Low Amps				5.4				5 A					5 A				5.4
Power	4.9 KW	6.9 KW	7.6 KW		25.2 M	V 11,9 KW	10.7 KW		11.0	ĸw	19.2 KW	31.8 KW		6.0 KW	6.8 KW	4.0 KW	
Reactive Power	-0.4 KVAR	-0.1 KVAR	1.2 KVAR	Neutral	3.5 KVA	R 3.3 KVAR	0.7 KVAR	Neutral	-0.1 k	VAR	3.7 KVAR	1.0 KVAR	Neutral	1.1 KVAR	-0.3 KVAR	0.5 KVAR	Neutral
Amps	20 A	28 A	32 A	15 A	105 A	51 A	44 A	68 A	45	•	80 A	131 A	60 A	25 A	28 A	17 A	5 A
Amps max	28 A	46 A	70 A		134.4	_	96 A		76.		125 A	169 A		68 A	60 A	34 A	
Amps min	9.4	10 A	31 A		78 A	_	36 A		37.	_	72 A	82 A		24 A	14 A	7 A	
Amps (ms	17 A	25 A	37 A	24 A	106.4		56 A	65 A	53.	_	92 A	107 A	37 A	29 A	31 A	18 A	14 A
Energy -ve	1829	3075	3608	kWH4r	6337	4117	5069	KW04r	414	10	9624	4554	KWHE	2001	2057	2083	KWHI

Courtesy : Scottish and Southern Energy

Lessons Learned

Pad Mounted Substations

- Some locations are very compact, typically offer very limited access to live low voltage substation bus bars.
- At two locations that a bus bar connection could not be made without first isolating the busbars, which would involve disconnecting supplies to customers.

Pole Mounted Transformers

- Two pole locations were constrained as access to the neutral conductor could only be achieved at the transformer.
- For a pole mounted transformer, with live exposed high voltage terminations, access to the low voltage terminations cannot be achieved while the transformer is live.

Lessons Learned

 Pre-installation check: strength/speed of GPRC/cellular network signal individually at each site of installation

 Remote firmware upgrade and settings download features were used to subsequent device maintenance and save several site visits (time & money)

Rogowski coil best suited over traditional CT

 Protection functions (Overcurrent, Under/Over voltage, phase loss, Voltage sag/swell, etc.) were used to alarm the condition at remote locations

 Improved the system visibility, and narrow down the fault location

Summary

 LV monitoring and control can give better vision of the network with DERs and PHEVs

- Needs to cost effective, uninterruptable and easy site installation, light weight, compact design
- Pole Top/Pad Mounted Transformers & Switchgear
 - Condition monitoring overloading, temperatures, etc.
 - load flow/planning studies
- Cable in Vaults
 - Faulty section location; condition monitoring overloading
- End of Line Utility/Industrial
 - Power quality monitoring;
 - Inputs for enhanced Volt/Var control and non-technical losses applications

100 Monitoring and control node installed in Phase I at SSE Network

Thank You

Questions?